首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.  相似文献   

2.
《Endocrine practice》2022,28(10):1055-1061
ObjectivePrevious studies have reported inconsistent relationships between thyroid function and blood pressure (BP) levels. We aimed to explore the associations between thyroid hormone sensitivity and BP parameters.MethodsThis retrospective study included 6272 participants who underwent a health examination at the First Hospital of China Medical University between January 2017 and December 2018. The Thyroid Feedback Quantile-based Index (TFQI), Parametric TFQI, thyroid-stimulating hormone index, and thyrotroph thyroxine resistance index were calculated to reflect thyroid hormone sensitivity. Mean arterial pressure, pulse pressure, and rate-pressure product were used to indirectly represent arterial stiffness.ResultsThe TFQI was positively associated with systolic BP (β = 3.22), diastolic BP (β =2.32), and mean arterial pressure (β = 2.62) (P < .001, for all). Analyses of the Parametric TFQI, thyroid-stimulating hormone index, and thyrotroph thyroxine resistance index yielded similar results. The TFQI was positively related to pulse pressure and rate-pressure product. With a 1 SD increase in the TFQI, the adjusted odds ratio for hypertension was 1.11 (95% CI 1.04-1.18). When comparing the fourth quartile of the TFQI with the first, the odds ratio for hypertension was 1.27 (95% CI 1.07-1.51, Pfor trend = .006). These relationships remained significant when stratified by age, sex, and body mass index. Similar results were observed in a euthyroid or normotensive population.ConclusionThe TFQI was positively associated with BP and markers of arterial stiffness. Impaired thyroid hormone sensitivity was related to increased risk for hypertension.  相似文献   

3.
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is a multifunctional RNA-binding protein that is associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis and multisystem proteinopathy. In this study, we have used cryo-electron microscopy to investigate the three-dimensional structure of amyloid fibrils from full-length hnRNPA1 protein. We find that the fibril core is formed by a 45-residue segment of the prion-like low-complexity domain of the protein, whereas the remaining parts of the protein (275 residues) form a fuzzy coat around the fibril core. The fibril consists of two fibril protein stacks that are arranged into a pseudo-21 screw symmetry. The ordered core harbors several of the positions that are known to be affected by disease-associated mutations, but does not encompass the most aggregation-prone segments of the protein. These data indicate that the structures of amyloid fibrils from full-length proteins may be more complex than anticipated by current theories on protein misfolding.  相似文献   

4.
β-Carotene is converted into vitamin A in the body and can remove reactive oxygen species. However, it is still unclear whether β-carotene alters the expression levels of inflammation-related genes in macrophages and how this is regulated. In the present study, we investigated whether the administration of β-carotene under hyperglycemic conditions altered the expression level of inflammation-related genes and whether any observed differences were associated with changes in histone modifications in juvenile macrophage-like THP-1 cells. THP-1 cells (from a human monocytic leukemia cell line) were cultured in low glucose (5 mM), high glucose (25 mM), or high glucose (25 mM) + β-carotene (5 μM) media for 1 day, and mRNA expression levels of genes related to oxidative stress and inflammation, and histone modifications were determined by mRNA microarray and qRT-PCR analyses, and chromatin immunoprecipitation assays, respectively. The expression of inflammation-related genes, such as IL31RA, CD38, and NCF1B, and inflammation-associated signaling pathway genes, such as ITGAL, PRAM1, and CSF3R, were upregulated by β-carotene under high-glucose conditions. Under these conditions, histone H3 lysine 4 (K4) demethylation, H3K36 trimethylation, and H3K9 acetylation around the CD38, NCF1B, and ITGAL genes were higher in β-carotene-treated cells than in untreated cells. Treatment of juvenile macrophage-like THP-1 cells with β-carotene under these high glucose conditions induced the expression of inflammation-related genes, K9 acetylation, and K4 di- and K36 trimethylation of histone H3 around these genes.  相似文献   

5.
Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha−1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha−1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (PN), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (gs), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha−1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha−1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.  相似文献   

6.
This article reports for the first time the synthesis of some novel β-lactam morpholino-1,3,5-triazine hybrids by a [2+2]-cycloaddition reaction of imines 7a–c, 9a–c and 11 with ketenes derived from substituted acetic acids. The reaction was totally diastereoselective, leading exclusively to the formation of cis-β-lactams 8a–l, 10a–f and 12a–c. The synthesized compounds were tested for activity towards SW1116, MCF-7 and HepG2 cancer cell lines and non-cancerous HEK-293 cell line by MTT assay. None of the compounds exert an observable effect on HepG2, MCF-7 and HEK-293 cells, but compounds 7b, 8f, 8g, 8l, 10c, and 10e exhibited excellent growth inhibitory activity (IC50 < 5 µM) against SW 1116 cells, comparable to that of doxorubicin (IC50 = 6.9 µM). An evaluation of the antioxidant potential of each of the compounds, performed by diphenylpicrylhydrazyl (DPPH) assay, indicated that 7b, 9a, 9b and 9c have strong free radical scavenging activity. UV absorption titration studies reveal that 7b, 8l, 8g and 8f interact strongly with calf-thymus DNA (CT-DNA) in the order of 8l > 7b > 8f > 8g. Collectively, the in vitro capabilities of some of these morpholino-triazine imines and β-lactams suggest possible applications to development of new antioxidants and DNA binding therapeutics.  相似文献   

7.
《Endocrine practice》2022,28(9):867-874
ObjectiveWe aimed to analyze the association between certain types of urinary polycyclic aromatic hydrocarbons (PAHs) and bone mineral density (BMD) at specific sites of the body.MethodsA total of 2978 eligible participants from the National Health and Nutrition Examination Survey 2001 to 2004 were included in this study. Data of 8 urinary PAHs and BMDs of 3 skeleton sites and the total body were analyzed. Univariate and multivariate linear regression analyses were performed to explore the association between urinary PAHs and BMDs. Subgroup analyses stratified by sex and body mass index were also performed.ResultsAfter adjustment for all confounders, elevated 3-fluorene (β = 0.046; 95% confidence intervals [CIs], 0.007-0.084) and 2-fluorene (β = 0.054; 95% CI, 0.007-0.100) levels were associated with greater left arm BMD, whereas no statistical differences were observed in the relationship between other PAHs and BMDs (all P > .05). Higher 3-fluorene and 2-fluorene levels were still associated with increased left arm BMD in men (P < .05), whereas the higher 2-phenanthrene level was related to decreased left arm BMD (β = ?0.062; 95% CI, ?0.105 to ?0.019), right arm BMD (β = ?0.059; 95% CI, ?0.091 to ?0.027), and total BMD (β = ?0.065; 95% CI, ?0.119 to ?0.012) in women. Similar results were also found in different body mass index populations (all P < .05).ConclusionCertain urinary PAHs are associated with BMDs at specific body sites. Future studies are needed to illustrate the mechanisms behind the association to establish a causal relationship.  相似文献   

8.
《Endocrine practice》2023,29(3):174-178
ObjectiveLipohypertrophy (LH) is a common complication of insulin therapy in type 1 diabetes mellitus (T1DM). We examined whether an intervention consisting of LH assessment and retraining on insulin infusion set use improves glycemic control on subcutaneous insulin infusion (CSII) in patients with T1DM.MethodsThe intervention was conducted in 79 consecutive patients with T1DM. Data on glucose levels, glycated hemoglobin (HbA1c), and insulin doses were collected at baseline and after a median of 22 weeks (20-31.75 weeks).ResultsA total of 46 patients with T1DM (23 [50%] women) participating in the follow-up were characterized by a median age of 29 years (25-33.8 years), body mass index of 24.6 ± 3.3 kg/m2, T1DM duration of 16.5 years (8.3-20 years), and subcutaneous insulin infusion duration of 7 years (4-10.8 years). Patients’ median HbA1c fell from 7.4% (6.7%-8.2%) to 7.05% (6.4%-7.6%) (P < .001), daily insulin dose/kg decreased (0.7 ± 0.20 vs 0.68 ± 0.15 IU/kg; P = .017) together with the total daily insulin dose (50.3 [40.5-62.7] vs 47.6 [39.8-62.1] IU; P = .019]. Furthermore, the percentage of basal insulin dose increased (43.0% [36-50] vs 44.0% [39.0-50.0]; P = .010], whereas the percentage of bolus dose decreased (57% [50-64] vs 56% [50-61], P = .010).ConclusionsThe structured LH-related intervention in patients with T1DM on insulin pumps resulted in better glycemic control and a decrease in total daily insulin dose.  相似文献   

9.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

10.
BackgroundAmomum villosum Lour., (Zingiberaceae) an herbaceous plant in the ginger family, has been used to treat various diseases. In a single-blind, randomized, crossover study, we assessed the postprandial blood insulin and blood glucose responses in healthy subjects (n = 40) after the Amomum villosum water extract (AVE) (5 g/person) or a placebo (5 g/person) consumption.MethodsDuring each treatment course, the healthy subject consumed a regular late afternoon meal, followed by fasting for 12 h, and arrived at the clinical study center the next morning. Blood insulin and blood glucose levels were assessed at 0, 30, 60, 90, and 120 min after AVE consumption. Between each treatment, the subjects accomplished one week of a washout period.ResultsThe AVE intake demonstrated a significant (67.26%) decline in postprandial blood glucose AUC0–120 min (incremental area under the curve from 0 to 120 min) versus the placebo (P = 0.011). Furthermore, AVE reduced postprandial blood insulin AUC0–120 min by 59.95% compared to the placebo group (P < 0.003), supporting the blood glucose results.ConclusionThis study revealed that AVE consumption significantly reduced postprandial insulin and glucose levels in healthy individuals, due in part to inhibition of α-glucosidase, and glucose transport.  相似文献   

11.
The common marmoset Callithrix jacchus encodes two glutathione transferase (GST) enzymes with ketosteroid double-bond isomerase activity. The most active enzyme is CjaGST A3-3 showing a specific activity with 5-androsten-3,17-dione (Δ5-AD) of 62.1 ± 1.8 μmol min-1 mg-1, and a kcat value of 261 ± 49 s-1. The second ketosteroid isomerase CjaGST A1-1 has a 30-fold lower specific activity with Δ5-AD and a 37-fold lower kcat value. Thus, the marmoset CjaGST A3-3 would be the main contributor to the biosynthesis of the steroid hormones testosterone and progesterone, like the human ortholog HsaGST A3-3. Two residues differ in the H-site of the 91.4% sequence identical CjaGST A1-1 and CjaGST A3-3, and modeling of the structures suggests that the bulky phenyl ring of Phe111 in CjaGST A1-1 causes steric hindrance in the binding of the steroid substrate. Tributyltin acetate (IC50=0.16 ± 0.004 μM) and ethacrynic acid (IC50=3.3 ± 0.2 μM) were found to be potent inhibitors of CjaGST A3-3, as previously demonstrated with the human and equine orthologs.  相似文献   

12.
《Endocrine practice》2021,27(7):728-735
ObjectiveProlactin (PRL) is a polypeptide hormone named for its crucial role in lactation. Recently, PRL has been recognized as a metabolic hormone that regulates energy metabolism. The current study aimed to investigate the relationship between circulating PRL and metabolic alterations in overweight/obese patients and the effect of weight loss through bariatric surgery on circulating PRL.MethodsA total of 448 overweight/obese patients aged between 18 and 40 years and 120 age- and sex-matched healthy controls with normal weight were enrolled. Among all participants, 156 obese patients underwent bariatric surgery.ResultsCirculating PRL levels were significantly increased in the overweight (15.27 ± 9.58 μg/L) and obese (17.75 ± 9.15 μg/L) groups compared with the normal weight (13.57 ± 9.03 μg/L) group. Multiple regression analyses demonstrated that the adipose tissue insulin resistance (adipo-IR) level was an independent predictor for PRL (β = −0.451, P < .01). Despite comparable anthropometric parameters, the overweight/obese patients with a higher PRL tertile had decreased levels of triglycerides, nonesterified fatty acids, homeostasis model assessment of insulin resistance, and adipo-IR compared with the patients in the moderate and lower PRL tertiles. Serum PRL levels were significantly decreased following the alleviation of metabolic parameters after bariatric surgery (from 17.12 ± 8.27 to 13.00 ± 5.78 μg/L, P < .05), and the decrease in PRL levels was significantly greater in the lower adipo-IR group than in the higher adipo-IR group (P < .01).ConclusionAn increased serum PRL level might be an adaptive response for protecting against metabolic disorders in obesity.  相似文献   

13.
Aggregation of 42-residue amyloid β-protein (Aβ42) can be prevented by β-sheet breaker peptides (BSBps) homologous to LVFFA residues, which are included in a β-sheet region of Aβ42 aggregates. To enhance the affinity of BSBps to the Aβ42 aggregates, we designed and synthesized β-strand-fixed peptides (BSFps) whose side chains were cross-linked by ring closing metathesis. Conformation analysis verified that the designed peptides could be fixed in β-strand conformation. Among the synthesized pentapeptides, 1 and 12, whose side chains of 2nd and 4th residues were cross-linked, significantly inhibited the aggregation of Aβ42. This suggested that β-strand-fixation of BSBps could enhance their inhibitory activity against the Aβ42 aggregation. However, pentapeptides 1 and 12 had little effect on morphology of Aβ42 aggregates (fibrils) and neurotoxicity of Aβ42 against SH-SY5Y cells.  相似文献   

14.
《Endocrine practice》2023,29(1):29-32
ObjectiveRecent advances in technology have allowed for the expanded use of hybrid closed-loop insulin pump therapy and automated insulin delivery systems for the management of diabetes mellitus. We assessed the outcomes of introducing Tandem t:slim X2 with the Control-IQ technology in a general endocrine clinic.MethodsData from 66 adults with type 1 (n = 61) and type 2 (n = 5) diabetes mellitus were aggregated for analysis. Patients were either transitioned from traditional insulin pump therapy or multiple daily injection therapy to Tandem t:slim X2 with the Control-IQ technology from January 2020 to June 2021. The assessed clinical end points included changes in time below range, time above range, and time in target range. Changes in hemoglobin A1C before and after Control-IQ technology implementation were noted. The primary outcome was a change in time in target range with the Control-IQ technology.ResultsThere was a significant increase in time in target range when comparing pre- and post–Control-IQ technology (49.5% vs 63.3%, P < .0003) values. There was a reduction in time above range (46.8% vs 34.9%, P < .0013), a decrease in time below range (4.0% vs 1.7%, P = .017), and a decrease in hemoglobin A1C after transitioning to the Control-IQ technology (7.7% [61 mmol/mol] vs 7.1% [54 mmol/mol], P < .017). The patient dropout rate was low (7%).ConclusionThe Control-IQ technology system was effective in reducing hyperglycemia while increasing time in target range and decreasing hypoglycemia. This technology is a useful and effective addition to the growing number of automated insulin delivery systems. The clinical outcomes mirror the results found in the key adult pivotal trials.  相似文献   

15.
《Endocrine practice》2023,29(1):18-23
ObjectiveTo assess the efficacy and safety of analog insulins in comparison with human insulins for hyperglycemia in hospitalized patients with acute stroke.MethodsIn this single-center, open-label, randomized trial, 102 patients (age 59.4 ± 11.7 years, 54 women) admitted with acute stroke (52 ischemic, 50 hemorrhagic) and hyperglycemia were assigned to analog insulin (n = 52) or human insulin (n = 50) group during February to June 2021. Insulin was initiated and titrated according to the predefined standard protocol. The capillary blood glucose (BG) level was monitored by standardized glucometers. The primary outcomes were mean daily BG and the number of hypoglycemic events.ResultsBetween the 2 treatment groups, there was no significant difference in the mean daily BG (P >.05 for all days) or in the frequency of hypoglycemic episodes (P =.727). Four participants experienced severe hypoglycemia; all were receiving human insulin (P =.054). In the analog insulin group, there was a tendency toward lower daily total requirement for insulin (P =.053). The difference in bolus insulin dose was significantly lower in the analog insulin group (P =.029), but the difference in basal insulin dose was similar (P =.167). Between the 2 groups, there were no significant differences in the hospital mortality rate, modified Rankin Scale score on outcome, or length of hospital stay (P =.729,.658, and.918, respectively).ConclusionHospitalized patients acute stroke and hyperglycemia exhibited similar mean BG but a trend of lower incidence of severe hypoglycemia when treated with analog insulins in comparison with human insulin.  相似文献   

16.
《Endocrine practice》2023,29(7):553-559
ObjectiveAutoantibodies against the thyrotropin receptor (TSH-R-Ab) are key mediators for the pathogenesis of Graves' disease (GD). TSH-R-Ab degradation was evaluated using several immunoassays within an exploratory, controlled trial in patients with GD receiving a monoclonal antibody (mAb) targeting the neonatal crystallizable fragment receptor (FcRn).MethodsSerial measurements of TSH-R-Ab serum levels were performed using 3 different binding and cell-based assays in patients with GD either on medication or on placebo.ResultsIn contrast to the placebo group, in which no changes were observed, a 12-week mAb therapy led to an early and significant decrease (>60%) in the serum TSH-R-Ab levels in patients with thyroidal and extrathyroidal GD, as unanimously shown in all 3 assays. These marked changes were noted already at week 7 post baseline (P <.0001 for the binding immunoassay and for the luciferase (readout) bioassay). The 3 TSH-R-Ab binding and bioassays were highly correlated in the samples of both study groups (binding immunoassay vs luciferase bioassay, r =.91, P <.001, binding vs cyclic adenosine monophosphate (cAMP) bioassay, r = 0.86, P <.001, and luciferase vs cAMP bioassay, r = 0.71, P =.006). The serological results correlated with the course of the extrathyroidal clinical parameters of GD, that is, clinical activity score and proptosis.ConclusionTargeting the FcRn markedly reduces the disease-specific TSH-R-Ab in patients with GD. The novel and rapid TSH-R-Ab bioassay improves diagnosis and management of patients with GD.  相似文献   

17.
《Endocrine practice》2021,27(1):44-50
ObjectiveIn type 1 diabetes mellitus (T1DM) management, continuous glucose monitoring (CGM)-derived parameters can provide additional insights, with time in range (TIR) and other parameters reflecting glycemic control and variability being put forward. This study aimed to examine the added and interpretative value of the CGM-derived indices TIR and coefficient of variation (CV%) in T1DM patients stratified according to their level of glycemic control by means of HbA1C.MethodsT1DM patients with a minimum disease duration of 10 years and without known macrovascular disease were enrolled. Patients were equipped with a blinded CGM device for 7 days. TIR and time spent in hypoglycemia and hyperglycemia were determined, and CV% was used as a parameter for glycemic variability. Pearson (r) and Spearman correlations (rs) and a regression analysis were used to examine associations.ResultsNinety-five patients (age: 45 ± 10 years; HbA1C level: 7.7% ± 0.8% [61 ± 7 mmol/mol]) were included (mean blood glucose [MBG]: 159 ± 31 mg/dL; TIR: 55.8% ± 14.9%; CV%: 43.5% ± 7.8%) and labeled as having good (HbA1C level ≤7% [≤53 mmol/mol]; n = 20), moderate (7%-8%; n = 44), or poor (>8% [>64 mmol/mol]; n = 31) glycemic control. HbA1C was significantly associated with MBG (rs = 0.48, P < .001) and time spent in hyperglycemia (total: rs = 0.52; level 2: r = 0.46; P < .001) but not with time spent in hypoglycemia and CV%, even after an analysis of the HbA1C subgroups. Similarly, TIR was negatively associated with HbA1C (r = 0.53; P < .001), MBG (rs = 0.81; P < .001), and time spent in hyperglycemia (total: rs = 0.90; level 2: rs = 0.84; P < .001) but not with time in hypoglycemia. The subgroup analyses, however, showed that TIR was associated with shorter time spent in level-2 hypoglycemia in patients with good (rs = 0.60; P = .007) and moderate (rs = 0.25; P = .047) glycemic control. In contrast, CV% was strongly positively associated with time in hypoglycemia (total: rs = 0.78; level 2: rs = 0.76; P < .001) but not with TIR or time in hyperglycemia in the entire cohort, although the subgroup analyses showed that TIR was negatively associated with CV% in patients with good glycemic control (r = 0.81, P < .001) and positively associated in patients with poor glycemic control (r = +0.47; P < .01).ConclusionThe CGM-derived metrics TIR and CV% are related to clinically important situations, TIR being strongly dependent on hyperglycemia and CV% being reflective of hypoglycemic risk. However, the interpretation and applicability of TIR and CV% and their relationship depends on the level of glycemic control of the individual patient, with CV% generally adding less clinically relevant information in those with poor control. This illustrates the need for further research and evaluation of composite measures of glycemic control in T1DM.  相似文献   

18.
Antibacterial and cytotoxic activities of Euphorbia balsamifera, fractions and pure compounds were evaluated. The cytotoxic assays for HCT116, HePG2 and MCF7 showed a significant IC50: 54.7 and 76.2 µg/mL of non-polar fraction “n-hexane” against HCT116 and HePG2, respectively. Antibacterial results revealed that plant fractions exhibited significant potential against the tested pathogens than the total extract where n-butanol and ethyl acetate fractions showed significant antibacterial activity (P < 0.05) against tested bacterial strains. Isolation and structure determination of compounds from n-hexane and n-butanol fractions were performed. From n-hexane fraction, 29-nor-cycloartanol (1), lanost-8-en-3-ol (2a), cycloartanol (2b) and kampferol-3,4'-dimethyl ether (3) were isolated and structurally identified, along with 24 compounds were tentatively identified by GC–MS. From the polar n-butanol fraction, 4-O-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (4), 4-O-α-L-rhamnosyl-(1 → 6)-β-D-glucopyranosyl-2-hydroxy-6methoxy-acetophenone (5), quercetin-3-O-glucopyranoside (6) and isoorientin (7) were assigned. Structures of the obtained compounds were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Except compounds 1 and 5, all reported compounds announced antibacterial efficiency. Compound 2 showed selectively the highest activity against Enterococcus faecalis (22 ± 0.13 mm), meanwhile 4-O-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (4) showed broadly the highest antibacterial activity with MIC of 1.15–1.88 mg/mL against the test Gram-positive and Gram-negative bacteria. Cytotoxic assays indicated that kampferol-3,4'-dimethyl ether (3) exhibited the highest activity with matching IC50 values to doxorubicin; 111.46, 42.67 and 44.90 µM against HCT116, HePG2 and MCF7, respectively, however, it is toxic on retina normal cell line RPE1.  相似文献   

19.
Type 2 diabetes mellitus (T2DM) increases the risk of cognitive decline and dementia. Disruptions in the cytochrome P450-soluble epoxide hydrolase (CYP450-sEH) pathway have been reported in T2DM, obesity and cognitive impairment. We examine linoleic acid (LA)-derived CYP450-sEH oxylipins and cognition in T2DM and explore potential differences between obese and nonobese individuals. The study included 51 obese and 57 nonobese participants (mean age 63.0 ± 9.9, 49% women) with T2DM. Executive function was assessed using the Stroop Color-Word Interference Test, FAS-Verbal Fluency Test, Digit Symbol Substitution Test, and Trails Making Test-Part B. Verbal memory was assessed using the California Verbal Learning Test, second Edition. Four LA-derived oxylipins were analyzed by ultra-high-pressure–LC/MS, and the 12,13-dihydroxyoctadecamonoenoic acid (12,13-DiHOME) considered the main species of interest. Models controlled for age, sex, BMI, glycosylated hemoglobin A1c, diabetes duration, depression, hypertension, and education. The sEH-derived 12,13-DiHOME was associated with poorer executive function scores (F1,98 = 7.513, P = 0.007). The CYP450-derived 12(13)-epoxyoctadecamonoenoic acid (12(13)-EpOME) was associated with poorer executive function and verbal memory scores (F1,98 = 7.222, P = 0.008 and F1,98 = 4.621, P = 0.034, respectively). There were interactions between obesity and the 12,13-DiHOME/12(13)-EpOME ratio (F1,97 = 5.498, P = 0.021) and between obesity and 9(10)-epoxyoctadecamonoenoic acid (9(10)-EpOME) concentrations (F1,97 = 4.126, P = 0.045), predicting executive function such that relationships were stronger in obese individuals. These findings suggest that the CYP450-sEH pathway as a potential therapeutic target for cognitive decline in T2DM. For some markers, relationships may be obesity dependent.  相似文献   

20.
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号