首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibroblast growth factor receptor 1 (FGFR1) is known to be activated by homodimerization in the presence of both the FGF agonist ligand and heparan sulfate glycosaminoglycan. FGFR1 homodimers in turn trigger a variety of downstream signaling cascades via autophosphorylation of tyrosine residues in the cytoplasmic domain of FGFR1. By means of Bioluminescence Energy Resonance Transfer (BRET) as a sign of FGFR1 homodimerization, we evaluated in HEK293T cells the effects of all known FGF agonist ligands on homodimer formation. A significant correlation between BRET2 signaling and ERK1/2 phosphorylation was observed, leading to a further characterization of the binding and signaling properties of the FGF subfamilies. FGF agonist ligand-FGFR1 binding interactions appear as the main mechanism for the control of FGFR1 homodimerization and MAPK signaling which demonstrated a high correlation. The bioinformatic analysis demonstrates the interface of the two pro-triplets SSS (Ser–Ser–Ser) and YGS (Tyr–Gly–Ser) located in the extracellular and intracellular domain of the FGFR1. These pro-triplets are postulated participate in the FGFR1 homodimerization interface interaction. The findings also reveal that FGF agonist ligands within the same subfamily of the FGF gene family produced similar increases in FGFR1 homodimer formation and MAPK signaling. Thus, the evolutionary relationship within this gene family appears to have a distinct functional relevance.  相似文献   

2.
Laminin alpha chains have unique spatiotemporal expression patterns during development and defining their function is necessary to understand the regulation of epithelial morphogenesis. We investigated the function of laminin alpha5 in mouse submandibular glands (SMGs). Lama5(-/-) SMGs have a striking phenotype: epithelial clefting is delayed, although proliferation occurs; there is decreased FGFR1b and FGFR2b, but no difference in Lama1 expression; later in development, epithelial cell organization and lumen formation are disrupted. In wild-type SMGs alpha5 and alpha1 are present in epithelial clefts but as branching begins alpha5 expression increases while alpha1 decreases. Lama5 siRNA decreased branching, p42 MAPK phosphorylation, and FGFR expression, and branching was rescued by FGF10. FGFR siRNA decreased Lama5 suggesting that FGFR signaling provides positive feedback for Lama5 expression. Anti-beta1 integrin antibodies decreased FGFR and Lama5 expression, suggesting that beta1 integrin signaling provides positive feedback for Lama5 and FGFR expression. Interestingly, the Itga3(-/-):Itga6(-/-) SMGs have a similar phenotype to Lama5(-/-). Our findings suggest that laminin alpha5 controls SMG epithelial morphogenesis through beta1 integrin signaling by regulating FGFR expression, which also reciprocally regulates the expression of Lama5. These data link changes in basement membrane composition during branching morphogenesis with FGFR expression and signaling.  相似文献   

3.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

4.
Fibrous dysplasia (FD) patients sometimes suffer from concomitant hypophosphatemic rickets/osteomalacia, resulting from renal phosphate wasting. It was recently reported that FD tissue in the patients with McCune-Albright syndrome (MAS) expressed fibroblast growth factor-23 (FGF-23), which is now known to be as a pathogenic phosphaturic factor in patients with oncogenic osteomalacia and X-linked hypophosphatemic rickets. Since it remains controversial whether serum phosphate levels are influenced by FGF23 expressions in FD tissue, isolated FD patients without MAS syndrome were examined for the relationship between FGF23 expressions, circulating levels of FGF-23 and phosphate to negate the effects of MAS-associated endocrine abnormalities on serum phosphate. Eighteen paraffin embedded FD tissues and 2 frozen tissues were obtained for the study. Sixteen of 18 isolated FD tissues were successfully analyzed GNAS gene, which exhibited activated mutations observed in MAS. Eight of 16 FD tissues, which exhibited GNAS mutations, revealed positive staining for FGF-23. These evidence indicate that postzygotic activated mutations of GNAS is necessary for the FD tissue formation by mosaic distribution of mutated osteogenic cell lineage, but is not sufficient to elevate FGF23 expression causing generalized osteomalacia with severe renal phosphate wasting. The expression level of FGF23 in isolated FD tissue with hypophosphatemic osteomalacia determined by real-time PCR was abundant close to the levels in OOM tumors. Osteoblasts/osteocytes in woven bone were predominant source of circulating FGF-23 in FD tissues by immunohistochemistry. A negative correlation of the intensity of FGF-23 staining with serum inorganic phosphate levels indicated that the expression of FGF23 in focal FD tissues could be a prominent determinant of serum phosphate levels in isolated FD patient. These data provide novel insights into the regulatory mechanism of serum inorganic phosphate levels in isolated FD patients and extend the notion that FGF-23 originating from FD tissue may cause hypophosphatemia not only in isolated FD patients but also in the patients with MAS syndrome.  相似文献   

5.
Model analysis of difference between EGF pathway and FGF pathway   总被引:4,自引:0,他引:4  
The difference in time course of Ras and mitogen activated protein kinase (MAPK) cascade by different growth factors is considered to be the cause of different cellular responses. We have developed the computer simulation of Ras-MAPK signal transduction pathway containing newly identified negative feedback system, Sprouty, and adaptor molecules. Unexpectedly, negative feedback system did not profoundly affect time course of MAPK activation. We propose the key role of fibroblast growth factor receptor substrate 2 (FRS2) in NGF/FGF pathway for sustained MAPK activation. More Grb2-SOS complexes were recruited to the plasma membrane by binding to membrane-bound FRS2 in FGF pathway than in EGF pathway and caused sustained activation of ERK. The EGF pathway with high concentration of EGF receptor also induced sustained MAPK activation, which is consistent with the results in the PC12 cell overexpressing the EGF receptors. The simulated time courses of FRS2 knock-out cells were consistent with those of the reported experimental results.  相似文献   

6.
During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.  相似文献   

7.
Sphingosine kinase 1 catalyzes the formation of sphingosine-1-phosphate, a lipid mediator involved in the regulation of angiogenesis. Sphingosine kinase 1 is constitutively released from cells, even though it lacks a classical signal peptide sequence. Because copper-dependent non-classical stress-induced release of FGF1 also regulates angiogenesis, we questioned whether sphingosine kinase 1 is involved in the FGF1 release pathway. We report that (i) the coexpression of sphingosine kinase 1 with FGF1 inhibited the release of sphingosine kinase 1 at 37 degrees C; (ii) sphingosine kinase 1 was released at 42 degrees C in complex with FGF1; (iii) sphingosine kinase 1 null cells failed to release FGF1 at stress; (iv) sphingosine kinase 1 is a high affinity copper-binding protein which formed a complex with FGF1 in a cell-free system, and (v) sphingosine kinase 1 over expression rescued the release of FGF1 from inhibition by the copper chelator, tetrathiomolybdate. We propose that sphingosine kinase 1 is a component of the copper-dependent FGF1 release pathway.  相似文献   

8.
9.
10.
Introduction of a Michael acceptor on a flexible scaffold derived from pan-FGFR inhibitors has successfully yielded a novel series of highly potent FGFR4 inhibitors with selectivity over FGFR1. Due to reduced lipophilicity and aromatic ring count, this series demonstrated improved solubility and permeability. However, plasma instability and fast metabolism limited its potential for in vivo studies. Efforts have been made to address these problems, which led to the discovery of compound (?)-11 with improved stability, CYP inhibition, and good activity/selectivity for further optimization.  相似文献   

11.
Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.  相似文献   

12.
FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.  相似文献   

13.
For the correct development of the central nervous system, the balance between self-renewing and differentiating divisions of the neuronal progenitors must be tightly regulated. To maintain their self-renewing identity, the progenitors need to retain both apical and basal interfaces. However, the identities of fate-determining signals which cells receive via these connections, and the exact mechanism of their action, are poorly understood. The conditional inactivation of Fibroblast growth factor (FGF) receptors 1 and 2 in the embryonic mouse midbrain–hindbrain area results in premature neuronal differentiation. Here, we aim to elucidate the connection between FGF signaling and neuronal progenitor maintenance. Our results reveal that the loss of FGF signaling leads to downregulation of Hes1 and upregulation of Ngn2, Dll1, and p57 in the ventricular zone (VZ) cells, and that this increased neurogenesis occurs cell-autonomously. Yet the cell cycle progression, apico-basal-polarity, cell–cell connections, and the positioning of mitotic spindle in the mutant VZ appear unaltered. Interestingly, FGF8-protein is highly concentrated in the basal lamina. Thus, FGFs may act through basal processes of neuronal progenitors to maintain their progenitor status. Indeed, midbrain neuronal progenitors deprived in vitro of FGFs switched from symmetrical proliferative towards symmetrical neurogenic divisions. We suggest that FGF signaling in the midbrain VZ is cell-autonomously required for the maintenance of symmetrical proliferative divisions via Hes1-mediated repression of neurogenic genes.  相似文献   

14.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   

15.
Cysteine-rich FGF receptor (CFR) was originally identified as a FGF2 receptor and found to be identical to Golgi complex-localized glycoprotein-1 (GLG1), also known as MG-160, and to a murine E-selectin ligand-1 (ESL-1). Although CFR is a 150-kDa integral membrane glycoprotein that is primarily located in the cis-medial Golgi complex, a substantial proportion of CFR is secreted but the underlying mechanism is unknown. CFR contains several possible furin-like proprotein convertase (PC) and matrix metalloproteinase cleavage sites. Cells expressing CFR were treated with the furin protease inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone (decCMK) or the MMP-inhibitor GM6001. In the presence of furin-like PC inhibitor, secretion of CFR was almost completely inhibited. Secretion was not affected by the GM6001 inhibitor. The secreted forms were further characterized by creating different mutant CFR proteins with N-terminal and C-terminal tags. Immunoblot analysis and immunofluorescence indicated, that successive endoproteolytical processing of CFR which takes place in the Golgi complex is essential for secretion. Secreted CFR bound to heparan sulphate proteoglycan (HSPG) could trap FGFs and thereby directly competing with tyrosine kinase receptors for FGF binding.  相似文献   

16.
17.
Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.  相似文献   

18.
19.
TGF-β and IL-6 induce Th17 differentiation, and IL-23 is required for expansion and maintenance of Th17 cells. Recently, it was shown that IL-6 up-regulates IL-23R mRNA in naive CD4+ T cells and therefore IL-6 and IL-23 synergistically promote Th17 differentiation. However, the molecular mechanism whereby IL-6 and IL-23 induce Th17 differentiation and the relevance to TGF-β remain unknown. Here, we found that IL-6 up-regulated IL-23R mRNA expression, and IL-6 and IL-23 synergistically augmented its protein expression. The combination induced Th17 differentiation, and TGF-β1 further enhanced it. IL-6 augmented endogenous TGF-β1 mRNA expression, whereas the amount of TGF-β produced was not enough to induce Th17 differentiation by IL-6 alone. However, unexpectedly, the up-regulation of IL-23R and induction of Th17 differentiation by IL-6 and IL-23 were almost completely inhibited by anti-TGF-β. These results suggest that the induction of IL-23R and Th17 differentiation by IL-6 and IL-23 is mediated through endogenously produced TGF-β.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号