首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bond AE  Row PE  Dudley E 《Phytochemistry》2011,72(10):975-996
Proteins have the potential to undergo a variety of post-translational modifications and the different methods available to study these cellular processes has advanced rapidly with the continuing development of proteomic technologies. In this review we aim to detail five major post-translational modifications (phosphorylation, glycosylaion, lipid modification, ubiquitination and redox-related modifications), elaborate on the techniques that have been developed for their analysis and briefly discuss the study of these modifications in selected areas of plant science.  相似文献   

3.
Global alterations in epigenetic landscape are now recognized as a hallmark of cancer. Epigenetic mechanismssuch as DNA methylation,histone modifications,nucleosome positioning and non-coding RNAs are proven to have strong association with cancer. In particular,covalent post-translational modifications of histone proteins are known to play an important role in chromatin remodeling and thereby in regulation of gene expression. Further,histone modifications have also been associated with different aspects of carcinogenesis and have been studied for their role in the better management of cancer patients. In this review,we will explore and discuss how histone modifications are involved in cancer diagnosis,prognosis and treatment.  相似文献   

4.
5.
6.
Important regions of rRNA are rich in nucleotide modifications that can have strong effects on ribosome biogenesis and translation efficiency. Here, we examine the influence of pseudouridylation and 2′-O-methylation on translation accuracy in yeast, by deleting the corresponding guide snoRNAs. The regions analyzed were: the decoding centre (eight modifications), and two intersubunit bridge domains—the A-site finger and Helix 69 (six and five modifications). Results show that a number of modifications influence accuracy with effects ranging from 0.3- to 2.4-fold of wild-type activity. Blocking subsets of modifications, especially from the decoding region, impairs stop codon termination and reading frame maintenance. Unexpectedly, several Helix 69 mutants possess ribosomes with increased fidelity. Consistent with strong positional and synergistic effects is the finding that single deletions can have a more pronounced phenotype than multiple deficiencies in the same region. Altogether, the results demonstrate that rRNA modifications have significant roles in translation accuracy.  相似文献   

7.
Glycation and other non-enzymic post-translational modifications of proteins have been implicated in the complications of diabetes and other conditions. In recent years there has been extensive progress in the search for ways to prevent the modifications and prevent the consequences of the modifications. These areas are covered in this review together with newer ideas on possibilities of reversing the chemical modifications.  相似文献   

8.
Histone modifications are associated with many fundamental biological processes in cells. An emerging notion from recent studies is that meiosis stage-dependent histone modifications are crucial for the oocyte development in mammals. In this paper, we review the changes and regulation as well as functions of histone modifications during meiotic maturation of mammalian oocyte, with particular emphasis on histone acetylation, phosphorylation and methylation. In general, dynamic and differential modification patterns have been revealed during oocyte maturation, indicative of functional requirement. Disruption of histone modifications leads to defective chromosome condensation and segregation, delayed maturation progression and even oocyte aging. Although several histone-modifying enzymes have been identified in mammalian oocytes, more works are necessary to determine how they direct histone modifications globally and individually in oocytes. Studies on chromatin modification during oocyte development will have implications for our understanding of the mechanisms controlling nuclear architecture and genomic stability in female germ line.  相似文献   

9.
In an effort to discover novel oligonucleotide modifications for antisense therapeutics, we have prepared oligodeoxyribonucleotides containing more than 200 different modifications and measured their affinities for complementary RNA. These include modifications to the heterocyclic bases, the deoxy-ribose sugar and the phosphodiester linkage. From these results, we have been able to determine structure-activity relationships that correlate hybridization affinity with changes in oligonucleotide structure. Data for oligonucleotides containing modified pyrimidine nucleotides are presented. In general, modifications that resulted in the most stable duplexes contained a heteroatom at the 2'-position of the sugar. Other sugar modifications usually led to diminished hybrid stability. Most backbone modifications that led to improved hybridization restricted backbone mobility and resulted in an A-type sugar pucker for the residue 5'to the modified internucleotide linkage. Among the heterocycles, C-5-substituted pyrimidines stood out as substantially increasing duplex stability.  相似文献   

10.
The dynamics of redox metabolism necessitate cellular strategies for sensing redox changes and for responding to them. A common mechanism for receiving and transmitting redox changes is via reversible modifications of protein cysteine residues. A plethora of cysteine modifications have been described, including sulfenylation, glutathionylation, and disulfide formation. These post-translational modifications have the potential to alter protein structure and/or function and to modulate cellular processes ranging from division to death and from circadian rhythms to secretion. The focus of this thematic minireview series is cysteine modifications in response to reactive oxygen and nitrogen species.  相似文献   

11.
Lin H  Su X  He B 《ACS chemical biology》2012,7(6):947-960
In the past few years, several new protein post-translational modifications that use intermediates in metabolism have been discovered. These include various acyl lysine modifications (formylation, propionylation, butyrylation, crotonylation, malonylation, succinylation, myristoylation) and cysteine succination. Here, we review the discovery and the current understanding of these modifications. Several of these modifications are regulated by the deacylases, sirtuins, which use nicotinamide adenine dinucleotide (NAD), an important metabolic small molecule. Interestingly, several of these modifications in turn regulate the activity of metabolic enzymes. These new modifications reveal interesting connections between metabolism and protein post-translational modifications and raise many questions for future investigations.  相似文献   

12.
13.
14.
Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.  相似文献   

15.
16.
Recent advances in gel-free, mass spectrometry-based proteomics have firmly established existence of serine phosphorylation, threonine phosphorylation, tyrosine phosphorylation and lysine acetylation on many bacterial proteins. Intriguingly, numerous proteins have been shown to be modified by both modifications, leading to the emerging concept of cross-talk between posttranslational modifications in bacteria. This concept is further supported by biological follow-up studies that are starting to reveal bacterial proteins and processes regulated by multiple modifications. In this review, we provide an overview of the large-scale studies involving protein phosphorylation and acetylation in bacteria and discuss some of the current examples of cross-talk between these and other bacterial modifications.  相似文献   

17.
陈威  杨颖增  陈锋  周文冠  舒凯 《植物学报》1983,54(6):779-785
植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。  相似文献   

18.
Zhang K  Sridhar VV  Zhu J  Kapoor A  Zhu JK 《PloS one》2007,2(11):e1210
Post-translational modifications of histones play crucial roles in the genetic and epigenetic regulation of gene expression from chromatin. Studies in mammals and yeast have found conserved modifications at some residues of histones as well as non-conserved modifications at some other sites. Although plants have been excellent systems to study epigenetic regulation, and histone modifications are known to play critical roles, the histone modification sites and patterns in plants are poorly defined. In the present study we have used mass spectrometry in combination with high performance liquid chromatography (HPLC) separation and phospho-peptide enrichment to identify histone modification sites in the reference plant, Arabidopsis thaliana. We found not only modifications at many sites that are conserved in mammalian and yeast cells, but also modifications at many sites that are unique to plants. These unique modifications include H4 K20 acetylation (in contrast to H4 K20 methylation in non-plant systems), H2B K6, K11, K27 and K32 acetylation, S15 phosphorylation and K143 ubiquitination, and H2A K144 acetylation and S129, S141 and S145 phosphorylation, and H2A.X S138 phosphorylation. In addition, we found that lysine 79 of H3 which is highly conserved and modified by methylation and plays important roles in telomeric silencing in non-plant systems, is not modified in Arabidopsis. These results suggest distinctive histone modification patterns in plants and provide an invaluable foundation for future studies on histone modifications in plants.  相似文献   

19.
20.
陈威  杨颖增  陈锋  周文冠  舒凯 《植物学报》2019,54(6):779-785
植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号