首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Thalidomide was once administered to pregnant women as a mild sedative; however, it was subsequently shown to be strongly teratogenic. Recently, there has been renewed interest in thalidomide because of its curative effects against intractable diseases. However, the teratogenicity of thalidomide is manifested in various ways and is still not fully understood. In the present study, we evaluated the effects of thalidomide on early mesodermal differentiation by examining the differentiation of human induced pluripotent stem cells (hiPSCs). The most common symptom of thalidomide teratogenicity is limb abnormality, which led us to hypothesize that thalidomide prevents early mesodermal differentiation. Therefore, mesodermal differentiation of hiPSCs was induced over a 6-d period. To induce early mesoderm differentiation, 1 d after seeding, the cells were incubated with the small molecule compound CHIR99021 for 3 d. Thalidomide exposure was initiated at the same time as CHIR99021 treatment. After 5 d of thalidomide exposure, the hiPSCs began expressing a mesodermal marker; however, the number of viable cells decreased significantly as compared to that of control cells. We observed that the proportion of apoptotic and dead cells increased on day 2; however, the proportion of dead cells on day 5 had decreased, suggesting that the cells were damaged by thalidomide during early mesodermal differentiation (days 0–2). Our findings may help elucidate the mechanism underlying thalidomide teratogenicity and bring us closer to the safe use of this drug.  相似文献   

2.
Segmentation of the vertebrate body via the sequential formation of somites is an important process in embryogenesis. This sequential process is governed by the activation and regulation of Notch-related molecular oscillators by fibroblast growth factor and retinoic acid (RA) signaling. In this study, we identified ledgerline, a novel gene of Xenopus laevis expressed specifically in the presomitic mesoderm. Knockdown of ledgerline using antisense morpholino oligonucleotides shifted the developing somite front and altered the expression of genes that regulate molecular oscillation, including Delta2, ESR5, Hairy2a, and Thylacine1. Knockdown of ledgerline also downregulated RALDH-2 expression. Injection of RARalpha-CA, a constitutively active mutant of the RA receptor RARalpha, subsequently reduced the altered Thylacine1 expression. These results strongly suggest that ledgerline is essential for mesodermal RA activity and differentiation of the presomitic mesoderm during Xenopus somitogenesis.  相似文献   

3.

Background

In Xenopus early embryogenesis, various genes are involved with mesoderm formation. In particular, dorsal mesoderm contains the organizer region and induces neural tissues through the inhibition of bone morphogenetic protein (BMP) signaling. In our initial study to identify novel genes necessary for maintaining the undifferentiated state, we unexpectedly revealed mesoderm-inducing activity for mNanog in Xenopus.

Methodology/Principal Findings

The present series of experiments investigated the effect of mNanog gene expression on Xenopus embryo. Ectopic expression of mNanog induced dorsal mesoderm gene activity, secondary axis formation, and weakly upregulated Activin/nodal signaling. The injection of mNanog also effectively inhibited the target genes of BMP signaling, while Xvent2 injection downregulated the dorsal mesoderm gene expression induced by mNanog injection.

Conclusions/Significance

These results suggested that mNanog expression induces dorsal mesoderm by regulating both Activin/nodal signaling and BMP signaling in Xenopus. This finding highlights the possibly novel function for mNanog in stimulating the endogenous gene network in Xenopus mesoderm formation.  相似文献   

4.
Thalidomide, a drug used for the treatment of multiple myeloma and inflammatory diseases, is also a teratogen that causes birth defects, such as limb truncations and microphthalmia, in humans. Thalidomide-induced limb truncations result from increased cell death during embryonic limb development and consequential disturbance of limb outgrowth. Here we demonstrate in primary human embryonic cells and in the chicken embryo that thalidomide-induced signaling through bone morphogenetic proteins (Bmps) protects active PTEN from proteasomal degradation, resulting in suppression of Akt signaling. As a consequence, caspase-dependent cell death is stimulated by the intrinsic and Fas death receptor apoptotic pathway. Most importantly, thalidomide-induced limb deformities and microphthalmia in chicken embryos could be rescued by a pharmacological PTEN inhibitor as well as by insulin, a stimulant of Akt signaling. We therefore conclude that perturbation of PTEN/Akt signaling and stimulation of caspase activity is central to the teratogenic effects of thalidomide.  相似文献   

5.

Background

Induction of osteolytic bone lesions in multiple myeloma is caused by an uncoupling of osteoclastic bone resorption and osteoblastic bone formation. Current management of myeloma bone disease is limited to the use of antiresorptive agents such as bisphosphonates.

Methodology/Principal Findings

We tested the effects of daily administered parathyroid hormone (PTH) on bone disease and myeloma growth, and we investigated molecular mechanisms by analyzing gene expression profiles of unique myeloma cell lines and primary myeloma cells engrafted in SCID-rab and SCID-hu mouse models. PTH resulted in increased bone mineral density of myelomatous bones and reduced tumor burden, which reflected the dependence of primary myeloma cells on the bone marrow microenvironment. Treatment with PTH also increased bone mineral density of uninvolved murine bones in myelomatous hosts and bone mineral density of implanted human bones in nonmyelomatous hosts. In myelomatous bone, PTH markedly increased the number of osteoblasts and bone-formation parameters, and the number of osteoclasts was unaffected or moderately reduced. Pretreatment with PTH before injecting myeloma cells increased bone mineral density of the implanted bone and delayed tumor progression. Human global gene expression profiling of myelomatous bones from SCID-hu mice treated with PTH or saline revealed activation of multiple distinct pathways involved in bone formation and coupling; involvement of Wnt signaling was prominent. Treatment with PTH also downregulated markers typically expressed by osteoclasts and myeloma cells, and altered expression of genes that control oxidative stress and inflammation. PTH receptors were not expressed by myeloma cells, and PTH had no effect on myeloma cell growth in vitro.

Conclusions/Significance

We conclude that PTH-induced bone formation in myelomatous bones is mediated by activation of multiple signaling pathways involved in osteoblastogenesis and attenuated bone resorption and myeloma growth; mechanisms involve increased osteoblast production of anti-myeloma factors and minimized myeloma induction of inflammatory conditions.  相似文献   

6.
Thalidomide, which was formerly available commercially to control the symptoms of morning sickness, is a strong teratogen that causes fetal abnormalities. However, the mechanism of thalidomide teratogenicity is not fully understood; thalidomide toxicity is not apparent in rodents, and the use of human embryos is ethically and technically untenable. In this study, we designed an experimental system featuring human-induced pluripotent stem cells (hiPSCs) to investigate the effects of thalidomide. These cells exhibit the same characteristics as those of epiblasts originating from implanted fertilized ova, which give rise to the fetus. Therefore, theoretically, thalidomide exposure during hiPSC differentiation is equivalent to that in the human fetus. We examined the effects of thalidomide on undifferentiated hiPSCs and early-differentiated hiPSCs cultured in media containing bone morphogenetic protein-4, which correspond, respectively, to epiblast (future fetus) and trophoblast (future extra-embryonic tissue). We found that only the number of undifferentiated cells was reduced. In undifferentiated cells, application of thalidomide increased the number of apoptotic and dead cells at day 2 but not day 4. Application of thalidomide did not affect the cell cycle. Furthermore, immunostaining and flow cytometric analysis revealed that thalidomide exposure had no effect on the expression of specific markers of undifferentiated and early trophectodermal differentiated cells. These results suggest that the effect of thalidomide was successfully detected in our experimental system and that thalidomide eliminated a subpopulation of undifferentiated hiPSCs. This study may help to elucidate the mechanisms underlying thalidomide teratogenicity and reveal potential strategies for safely prescribing this drug to pregnant women.  相似文献   

7.
Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process.  相似文献   

8.
Vertebrate odd-skipped related genes (Osr) have an essential function during the formation of the intermediate mesoderm (IM) and the kidney structures derived from it. Here, we show that these genes are also crucial for limb bud formation in the adjacent lateral plate mesoderm (LPM). Reduction of zebrafish Osr function impairs fin development by the failure of tbx5a maintenance in the developing pectoral fin bud. Osr morphant embryos show reduced wnt2b expression, and increasing Wnt signaling in Osr morphant embryos partially rescues tbx5a expression. Thus, Osr genes control limb bud development in a non-cell-autonomous manner, probably through the activation of Wnt2b. Finally, we demonstrate that Osr genes are downstream targets of retinoic acid (RA) signaling. Therefore, Osr genes act as a relay within the genetic cascade of fin bud formation: by controlling the expression of the signaling molecule Wnt2ba in the IM they play an essential function transmitting the RA signaling originated in the somites to the LPM.  相似文献   

9.
10.
Fatty acid–binding protein 3 (FABP3) facilitates the movement of fatty acids in cardiac muscle. Previously, we reported that FABP3 is highly upregulated in the myocardium of ventricular septal defect patients and overexpression of FABP3 inhibited proliferation and promoted apoptosis in embryonic carcinoma cells (P19 cells). In this study, we aimed to investigate the effect of FABP3 gene silencing on P19 cell differentiation, proliferation and apoptosis. We used RNA interference and a lentiviral-based vector system to create a stable FABP3-silenced P19 cell line; knockdown of FABP3 was confirmed by quantitative real-time PCR. Expression analysis of specific differentiation marker genes using quantitative real-time PCR and observation of morphological changes using an inverted microscope revealed that knockdown of FABP3 did not significantly affect the differentiation of P19 cells into cardiomyocytes. CCK-8 proliferation assays and cell cycle analysis demonstrated that FABP3 gene silencing significantly inhibited P19 cell proliferation. Furthermore, Annexin V-FITC/propidium iodide staining and the caspase-3 activity assay revealed that FABP3 gene silencing significantly promoted serum starvation–induced apoptosis in P19 cells. In agreement with our previous research, these results demonstrate that FABP3 may play an important role during embryonic heart development, and that either overexpression or silencing of FABP3 will lead to an imbalance between proliferation and apoptosis, which may result in embryonic cardiac malformations.  相似文献   

11.
《Developmental biology》1997,189(2):246-255
With rapid progress in understanding the genes that control limb development and patterning interest is becoming focused on the factors that permit the emergence of the limb bud. The current hypothesis is that FGF-8 from the mesonephros induces limb initiation. To test this, the inductive interaction between the Wolffian duct and intermediate mesoderm was blocked rostral to the limb field, preventing mesonephric differentiation while maintaining the integrity of the limb field. The experimental outcome was monitored by following expression ofcSim1andLmx1,molecular markers for the duct and the mesonephros, respectively. Evidence is presented that the intermediate mesoderm undergoes apoptosis when the inductive interaction with the Wolffian duct is blocked.fgf-8expression was undetectable in the mesonephric area of embryos with confirmed absence of mesonephros; nevertheless, limb buds formed and limb development was normal. The mesonephros in general, and specifically itsfgf-8expression, was shown to be unnecessary for limb initiation and development; the hypothesis linking the mesonephros and limb development is not supported. Further studies of axial influences on limb initiation should now concentrate on medial structures such as Hensen's node and paraxial mesoderm; the alternative that no axial influences are required should also be examined.  相似文献   

12.
13.
14.
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.  相似文献   

15.
16.
17.

Background

Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood.

Objective

This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma.

Methods

Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro.

Results

The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro.

Conclusion

These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide.  相似文献   

18.
19.
The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPARβ/δ signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPARβ/δ and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.  相似文献   

20.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号