首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND AND AIMS: The spatial and statistical distribution of genome sizes and the adaptivity of genome size to some types of habitat, vegetation or microclimatic conditions were investigated in a tetraploid population of Festuca pallens. The population was previously documented to vary highly in genome size and is assumed as a model for the study of the initial stages of genome size differentiation. METHODS: Using DAPI flow cytometry, samples were measured repeatedly with diploid Festuca pallens as the internal standard. Altogether 172 plants from 57 plots (2.25 m(2)), distributed in contrasting habitats over the whole locality in South Moravia, Czech Republic, were sampled. The differences in DNA content were confirmed by the double peaks of simultaneously measured samples. KEY RESULTS: At maximum, a 1.115-fold difference in genome size was observed. The statistical distribution of genome sizes was found to be continuous and best fits the extreme (Gumbel) distribution with rare occurrences of extremely large genomes (positive-skewed), as it is similar for the log-normal distribution of the whole Angiosperms. Even plants from the same plot frequently varied considerably in genome size and the spatial distribution of genome sizes was generally random and unautocorrelated (P > 0.05). The observed spatial pattern and the overall lack of correlations of genome size with recognized vegetation types or microclimatic conditions indicate the absence of ecological adaptivity of genome size in the studied population. CONCLUSIONS: These experimental data on intraspecific genome size variability in Festuca pallens argue for the absence of natural selection and the selective non-significance of genome size in the initial stages of genome size differentiation, and corroborate the current hypothetical model of genome size evolution in Angiosperms (Bennetzen et al., 2005, Annals of Botany 95: 127-132).  相似文献   

2.
基因组大小在被子植物物种之间存在着巨大的变异, 但目前对不同生活型被子植物功能性状与基因组大小的关系缺乏统一的认识。本研究基于被子植物245科2,226属11,215个物种的基因组大小数据, 探讨了不同生活型物种种子重量、最大植株高度和叶片氮、磷含量4个功能性状与基因组大小之间的关系。结果表明, 被子植物最大植株高度和种子重量与基因组大小间的关系在草本和木本植物中存在显著差异。草本植物最大植株高度与基因组大小的关系不显著, 但种子重量与其呈极显著的正相关关系。木本植物最大植株高度与基因组大小显著负相关, 但种子重量与其关系不显著。木本植物叶片氮含量与基因组大小呈显著正相关, 但其他生活型植物的叶片氮、磷含量与基因组大小均无显著相关性。本研究表明被子植物功能性状与基因组大小的相关性在不同生活型间存在差异, 这为深入研究植物多种功能性状和植物生活型与基因组大小的权衡关系在植物演化和生态适应中的作用提供了重要依据。  相似文献   

3.
Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of angiosperms of varying growth forms. Guard cell length and epidermal cell area were used as two metrics of cell size and, in addition, stomatal density was measured. There was a significant positive relationship between genome size and both guard cell length and epidermal cell area and a negative relationship with stomatal density. Independent contrast analyses revealed that these traits are undergoing correlated evolution with genome size. However, the relationship was growth form dependent (nonsignificant results within trees/shrubs), although trees had the smallest genome/cell sizes and the highest stomatal density. These results confirm the generality of the genome size/cell size relationship. The results also suggest that changes in genome size, with concomitant influences on stomatal size and density, may influence physiology, and perhaps play an important genetic role in determining the ecological and life-history strategy of a species.  相似文献   

4.
【目的】准确测定基因组大小是进行禾谷丝核菌Rhizoctonia cerealis全基因组序列测定和拼接的基础,本研究旨在利用实时定量PCR方法预测禾谷丝核菌的基因组大小。【方法】首先克隆了禾谷丝核菌R0301菌株翻译延伸因子A基因(tef A)的部分序列,Southern杂交明确该基因在该病菌基因组中为单拷贝。以已测序立枯丝核菌(Rhizoctonia solani)AG1-IA融合群菌株GD118为对照,采用实时定量PCR的方法进行了禾谷丝核菌基因组大小的预测。【结果】实时定量PCR的方法可以比较准确的测定立枯丝核菌基因组的大小,研究首次预测了禾谷丝核菌的基因组大小位于32.2–36.6 Mb之间。【结论】实时定量PCR法是一种快速和简便的预测丝核菌基因组大小的方法。  相似文献   

5.
We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.  相似文献   

6.

Background and Aims

It is well known that genome size differs among species. However, information on the variation and dynamics of genome size in wild populations and on the early phase of genome size divergence between taxa is currently lacking. Genome size dynamics, heritability and phenotype effects are analysed here in a wild population of Festuca pallens (Poaceae).

Methods

Genome size was measured using flow cytometry with DAPI dye in 562 seedlings from 17 maternal plants varying in genome size. The repeatability of genome size measurements was verified at different seasons through the use of different standards and with propidium iodide dye; the range of variation observed was tested via analysis of double-peaks. Additionally, chromosome counts were made in selected seedlings.

Key Results and Conclusions

Analysis of double-peaks showed that genome size varied up to 1·188-fold within all 562 seedlings, 1·119-fold within the progeny of a single maternal plant and 1·117-fold in seedlings from grains of a single inflorescence. Generally, genome sizes of seedlings and their mothers were highly correlated. However, in maternal plants with both larger and smaller genomes, genome sizes of seedlings were shifted towards the population median. This was probably due to the frequency of available paternal genomes (pollen grains) in the population. There was a stabilizing selection on genome size during the development of seedlings into adults, which may be important for stabilizing genome size within species. Furthermore, a positive correlation was found between genome size and the development rate of seedlings. A larger genome may therefore provide a competitive advantage, perhaps explaining the higher proportion of plants with larger genomes in the population studied. The reason for the observed variation may be the recent induction of genome size variation, e.g. by activity of retrotransposons, which may be preserved in the long term by the segregation of homeologous chromosomes of different sizes during gametogenesis.Key words: Nuclear DNA content, intraspecific variation, genome size evolution, heritability, stabilizing selection, grasses, flow cytometry  相似文献   

7.
Genome size varies tremendously both within and among taxa, and strong correlations between genome size and various physiological and ecological attributes suggest that genome size is a key trait of organisms, yet the causalities remains vague. In the present study, we tested how genome size is related to key physiological and ecological properties in five large orders of crustaceans: Decapoda, Cladocera, Amphipoda, Calanoida, and Cyclopoida. These span a wide range in sizes, habitats and life-history traits. To some extent, genome size reflected phylogenetic footprints but, generally, a very wide range in genome size was found within all orders. Genome size was positively correlated with body size in Amphipoda, Cladocera, and Copepoda, but not for Decapoda in general. This could indicate that the evolution of body size occurs mainly by changing cell size for the three first orders, whereas it is more attributed to cell numbers for Decapoda. Cladocera, with direct development and a high growth rate, have minute genomes compared to copepods that possess a more complex life history, whereas, within Decapoda and Amphipoda, developmental complexity is not related to genome size. The present study suggests that, within the crustaceans, selection for a wide variety of life-history strategies has led to widely different genome sizes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 393–399.  相似文献   

8.
This paper examines macro and micro-level patterns of genome size evolution in the Brassicaceae. A phylogeny of 25 relatives of Arabidopsis thaliana was reconstructed using four molecular markers under both parsimony and Bayesian methods. Reconstruction of genome size (C value) evolution as a discrete character and as a continuous character was also performed. In addition, size dynamics in small chromosomal regions were assessed by comparing genomic clones generated for Arabidopsis lyrata and for Boechera stricta to the fully sequenced genome of A. thaliana. The results reveal a sevenfold variation in genome size among the taxa investigated and that the small genome size of A. thaliana is derived. Our results also indicate that the genome is free to increase or decrease in size across these evolutionary lineages without a directional bias. These changes are accomplished by insertions and deletions at both large and small-scales occurring mostly in intergenic regions, with repetitive sequences and transposable elements implicated in genome size increases. The focus upon taxa relatively closely related to the model organism A. thaliana, and the combination of complementary approaches, allows for unique insights into the processes driving genome size changes.  相似文献   

9.
Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77–2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97–2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05–5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.  相似文献   

10.
基于流式细胞技术的灵芝基因组大小估测   总被引:2,自引:0,他引:2  
以药典规定的灵芝正品来源灵芝Ganoderma lucidum作为研究对象,利用已完成全基因组测序的黑曲霉Aspergillus niger作为内标,通过机械破碎菌丝体的方法获得合适浓度的细胞核悬液,碘化丙啶荧光染色后成功应用流式细胞术进行基因组大小估测。经过优化材料培养、样品制备、上机分析等实验条件,估测得出灵芝基因组大小(48.98±0.60)Mb,为灵芝基因组学研究提供重要数据。该方法简捷稳定,在蕈菌范围内,首次得到了全基因组测序数据与光学图谱结果验证,为蕈菌基因组学研究提供重要技术平台。  相似文献   

11.
BACKGROUND: In studies looking at individual polyploid species, the most common patterns of genomic change are that either genome size in the polyploid is additive (i.e. the sum of parental genome donors) or there is evidence of genome downsizing. Reports showing an increase in genome size are rare. In a large-scale analysis of 3008 species, genome downsizing was shown to be a widespread biological response to polyploidy. Polyploidy in the genus Nicotiana (Solanaceae) is common with approx. 40 % of the approx. 75 species being allotetraploid. Recent advances in understanding phylogenetic relationships of Nicotiana species and dating polyploid formation enable a temporal dimension to be added to the analysis of genome size evolution in these polyploids. METHODS: Genome sizes were measured in 18 species of Nicotiana (nine diploids and nine polyploids) ranging in age from <200,000 years to approx. 4.5 Myr old, to determine the direction and extent of genome size change following polyploidy. These data were combined with data from genomic in situ hybridization and increasing amounts of information on sequence composition in Nicotiana to provide insights into the molecular basis of genome size changes. KEY RESULTS AND CONCLUSIONS: By comparing the expected genome size of the polyploid (based on summing the genome size of species identified as either a parent or most closely related to the diploid progenitors) with the observed genome size, four polyploids showed genome downsizing and five showed increases. There was no discernable pattern in the direction of genome size change with age of polyploids, although with increasing age the amount of genome size change increased. In older polyploids (approx. 4.5 million years old) the increase in genome size was associated with loss of detectable genomic in situ hybridization signal, whereas some hybridization signal was still detected in species exhibiting genome downsizing. The possible significance of these results is discussed.  相似文献   

12.
Genome sizes vary widely across the tree of life and the evolutionary mechanism underlined remains largely unknown. Lynch and Conery (2003) proposed that evolution of genome complexity was driven mainly by nonadaptive stochastic forces and presented the observation that genome size was negatively correlated with effective population size (Ne) as a strong support for their hypothesis. Here, we analyzed the relation between Ne and genome size for 10 diploid Oryza species that showed about fourfold genome size variation. Using sequences of more than 20 nuclear genes, we estimated Ne for each species after correction for the effects of demography and heterogeneity of mutation rates among loci and species. Pairwise comparisons and correlation analyses did not detect a negative relationship between Ne and genome size despite about 6.5‐fold interspecies Ne variation. By calculating phylogenetically independent contrasts (PICs) for Ne, we repeated correlation analysis and did not find any correlation between Ne and genome size. These observations suggest that the genome size variation in the Oryza species cannot be explained simply by the effect of effective population size.  相似文献   

13.
The genome of Bacillus subtilis 168 was modified to yield a genome vector for the cloning of DNA several Mb in size. Unlike contemporary plasmid-based vectors, this 4.2 Mb genome vector requires specific in vivo handling protocols because of its large size. Inversion mutagenesis, a method to modify local genome structure without gain or loss of genes, was applied intensively to the B. subtilis genome; this technique made possible both exchange and translocation of designated regions of the genome. This method not only reshuffles the genome of B. subtilis, but can provide insight into the biologic principles underlying genome plasticity.  相似文献   

14.
The intron–genome size relationship was studied across a wide evolutionary range (from slime mold and yeast to human and maize), as well as the relationship between genome size and the ratio of intervening/coding sequence size. The average intron size is scaled to genome size with a slope of about one-fourth for the log-transformed values; i.e., on the global scale its increase in evolution is lower than the increase in genome size by four orders of magnitude. There are exceptions to the general trend. In baker's yeast introns are extraordinarily long for its genome size. Tetrapods also have longer introns than expected for their genome sizes. In teleost fish the mean intron size does not differ significantly, notwithstanding the differences in genome size. In contrast to previous reports, avian introns were not found to be significantly shorter than introns of mammals, although avian genomes are smaller than genomes of mammals on average by about a factor of 2.5. The extra-/intragenic ratio of noncoding DNA can be higher in fungi than in animals, notwithstanding the smaller fungal genomes. In vertebrates and invertebrates taken separately, this ratio is increasing as the increase in genome size. Two hypotheses are proposed to explain the variation in the extra-/intragenic ratio of noncoding DNA in organisms with similar numbers of genes: transition (dynamic) and equilibrium (static). According to the transition model, this variation arises with the rapid shift of genome size because the bulk of extragenic DNA can be changed more rapidly than the finely interspersed intron sequences. The equilibrium model assumes that this variation is a result of selective adjustment of genome size with constraints imposed on the intron size due to its putative link to chromatin structure (and constraints of the splicing machinery). Received: 23 October 1997 / Accepted: 14 April 1999  相似文献   

15.
《动物学研究》2017,(6):449-458
Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms.In this study,the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae,three genera in Luciolinae,and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry.The haploid genome sizes of Lampyridae ranged from 0.42 to 1.31 pg,a 3.1-fold span.Genome sizes of the fireflies varied within the tested subfamilies and genera.Lamprigera and Pyrocoelia species had large and small genome sizes,respectively.No correlation was found between genome size and morphological traits such as body length,body width,eye width,and antennal length.Our data provide additional information on genome size estimation of the firefly family Lampyridae.Furthermore,this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution.  相似文献   

16.
Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses.  相似文献   

17.
Zaitlin D  Pierce AJ 《Génome》2010,53(12):1066-1082
The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet (Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea, Saintpaulia, and Streptocarpus, all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia, a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%-26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine-cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon (Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ~633 × 10? base pairs, which is approximately 40% of the previously published estimate.  相似文献   

18.
The genome size of the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme (Cqf) was determined by flow cytometric analysis of propidium iodide-stained, intact haploid pycniospores with haploid spores of two genetically well characterized fungal species, Sclerotinia sclerotiorum and Puccinia graminis f.sp. tritici, as size standards. The Cqf haploid genome was estimated at ~90 Mb, similar to other Pucciniales species for which reference genome sequences are available. Twenty-three Cqf pycniospore samples were compared that comprised three samples obtained from naturally occurring pine galls and 20 samples obtained after artificial inoculation with parental isolates and their progeny. Significant variation in genome size (>10% of mean) was detected among unrelated as well as sibling Cqf samples. The unexpected plasticity in Cqf genome size observed among sibling samples is likely to be driven by meiosis between parental genomes that differ in size.  相似文献   

19.
There appears to be only a weak correlation between genome size and the corresponding total length of a complete set of synaptonemal complexes (SCs) based on published evidence for several fungal, plant, and animal species. This result is unexpected, considering the strong positive correlations between genome size (DNA amount) and total chromosome length and volume and between relative lengths of chromosomes and SCs. Because the observed weak correlation was based on limited data, we systematically investigated the relationship between genome size and SC length, using ten higher plant species. Two-dimensional spreads of SCs from primary microsporocytes at pachytene were prepared using a hypotonic bursting technique. The SC spreads were examined either by light or electron microscopy, and the lengths of at least ten complete sets of SCs were measured for each of the ten species. Additionally, the genome size of each species was determined from pollen tetrad protoplasts using flow cytometry. A strong correlation (r = 0.97) between total SC length and genome size was observed for higher plants, indicating a constant amount of DNA is associated with a given length of SC, at least when averaged over the whole genome.  相似文献   

20.
Genome size has been suggested to be a fundamental biological attribute in determining life-history traits in many groups of organisms. We examined the relationships between pine genome sizes and pine phylogeny, environmental factors (latitude, elevation, annual rainfall), and biological traits (latitudinal and elevational ranges, seed mass, minimum generation time, interval between large seed crops, seed dispersal mode, relative growth rate, measures of potential and actual invasiveness, and level of rarity). Genome sizes were determined for 60 pine taxa and then combined with published values to make a dataset encompassing 85 species, or 70% of species in the genus. Supertrees were constructed using 20 published source phylogenies. Ancestral genome size was estimated as 32 pg. Genome size has apparently remained stable or increased over evolutionary time in subgenus Strobus, while it has decreased in most subsections in subgenus Pinus. We analyzed relationships between genome size and life-history variables using cross-species correlations and phylogenetically independent contrasts derived from supertree constructions. The generally assumed positive relation between genome size and minimum generation time could not be confirmed in phylogenetically controlled analyses. We found that the strongest correlation was between genome size and seed mass. Because the growth quantities specific leaf area and leaf area ratio (and to a lesser extent relative growth rate) are strongly negatively related to seed mass, they were also negatively correlated with genome size. Northern latitudinal limit was negatively correlated with genome size. Invasiveness, particularly of wind-dispersed species, was negatively associated with both genome size and seed mass. Seed mass and its relationships with seed number, dispersal mode, and growth rate contribute greatly to the differences in life-history strategies of pines. Many life-history patterns are therefore indirectly, but consistently, associated with genome size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号