共查询到20条相似文献,搜索用时 15 毫秒
1.
《Translational oncology》2022,15(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis. 相似文献
2.
《Translational oncology》2021,14(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis. 相似文献
3.
Lee SH Hong HS Liu ZX Kim RH Kang MK Park NH Shin KH 《Biochemical and biophysical research communications》2012,424(1):58-64
Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway. 相似文献
4.
5.
Sai Lv Ting Luo Yongyong Yang Yuqing Li Jie Yang Jiang Xu Jun Zheng Yan Zeng 《Journal of cellular and molecular medicine》2021,25(14):6760-6772
Epithelial-mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N-α-acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF-β1/Smad and EMT-related molecules. The Transwell migration, invasion, qRT-PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF-β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF-β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα-induced change in the migration, invasion and EMT-related molecules in OSCC cells after TGF-β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF-β1/Smad, a novel pathway for preventing OSCC. 相似文献
6.
Oral squamous cell carcinoma (OSCC) is a world-wide health problem and its incidence accounts for 1.9–3.5% of all malignant
tumors. Transforming growth factor beta/Smads (TGF-β/Smads) signaling pathway plays an important role in oncogenesis, but
its function and molecular mechanisms in OSCC remain unclear. Expression of transforming growth factor-β receptor type II
(TβRII) and Smad4 was studied by immunohistochemistry in 108 OSCC patients and 10 normal controls. Function and molecular
mechanisms of TGF-β/Smads signaling pathway was then investigated in two human tongue squamous carcinoma cell lines with high
and low metastasis (Tb and Tca8113) by RT-PCR, Western Blot, immunofluorescence, cell growth curve and flow cytometry (FCM),
respectively. TβRII and Smad4 were significantly down-regulated in tumor tissues (with or without lymph node metastasis) compared
to normal oral epithelium tissues (P < 0.05). TGF-β1 induced arrest of the cell cycle rather than cell death in Tca8113 and Tb cells, and this influence was mediated
by the increasing the expression and changing the location of its downstream components of TGF-β1/Smads signaling pathway.
TGF-β1 rapidly increased the expression of p15 and p21 in both Tca8113 and Tb cells. TGF-β1 did not increase p27 expression
in Tca8113 cells, but p27 expression was increased in Tb cells. These indicated that TGF-β1 induced G1 arrest of cell cycle through a different regulating pathway in Tb cells compared with Tca8113 cells. Thus, we conclude that
TGF-β/Smads signaling pathway play a important role on cell growth and metastasis potential in OSCC.
Xiumei Wang, Wenjing Sun, and Jing Bai contributed equally to this paper. 相似文献
7.
Mi Heon Ryu Hyung Mok Park Jin Chung Hae Ryoun Park 《Biochemical and biophysical research communications》2010,393(1):11-8
With progressive and rapid growth of malignant tumors, cancer cells in an ischemic condition are expected to develop an increased potential for local invasive growth. To address this hypothesis, we first examined the effect of hypoxia on the invasiveness of oral squamous cell carcinoma (OSCC) cells using the Matrigel invasion assay. We then investigated the effect of hypoxia on the protein and mRNA expression of α5 integrin and fibronectin, which are major factors involved in tumor cell invasion. We showed that (i) hypoxia increased the invasiveness of OSCC cells, (ii) α5 integrin and fibronectin protein and mRNA expression levels were increased in OSCC cells under hypoxic conditions, (iii) hypoxia stimulated autocrine secretion of fibronectin in OSCC cells, (iv) administration of siRNAHIF-1α caused a significant decrease in α5 integrin and fibronectin protein, confirming that HIF-1α plays a role in their induction, and (v) siRNAHIF-1α abrogated hypoxia-induced cell invasion. Collectively, these data suggest that hypoxia promotes OSCC cell invasion that is elicited by HIF-1α-dependent α5 integrin and fibronectin induction. 相似文献
8.
9.
Panpan Zhang Ying Liu Chong Li Li Zhang Qing Liu Tao Jiang 《Journal of cellular biochemistry》2019,120(9):16120-16127
PAPAS is a recently identified long noncoding RNA (lncRNA) with inhibitory effects on ribosomal RNA synthesis. We studied the role of PAPAS in oral squamous cell carcinoma (OSCC). In the present study we showed that plasma PAPAS and transforming growth factor β1 (TGF-β1) were both upregulated in patients with OSCC, and were positively correlated only in patients with OSCC. Plasma levels of PAPAS were not significantly affected by AJCC stages and upregulation of PAPAS distinguished stage I OSCC patients from healthy controls. High plasma levels of PAPAS were followed by low overall survival rate. PAPAS overexpression led to upregulation of TGF-β1 in OSCC cells, while TGF-β1 treatment failed to significantly affect PAPAS. PAPAS overexpression and exogenous TGF-β1 treatment led to promoted invasion and migration of OSCC cells. In addition, TGF-β inhibitor attenuated the effects of PAPAS overexpression. Therefore, lncRNA PAPAS may promote OSCC by upregulating TGF-β1. 相似文献
10.
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that regulates cell growth, differentiation, migration, apoptosis and extracellular matrix remodeling. TGF-β1 transduces signals from the cell membrane to the cell nucleus through serine/threonine kinase receptors and their downstream effectors, Smad molecules. Although many studies have been focused on TGF-β1-Smad signaling pathway, the role of TGF-β1/Smad in tongue squamous cell carcinoma is not fully understood. In the present study, we used a series of cell function assays to examine the role of TGF-β-Smad4 signaling in tongue squamous cell carcinoma. We observed the effects of TGF-β1 on the growth and metastatic potential of the tongue squamous cell carcinoma cell line Ts, which expresses lower level of Smad4 protein. We found that Smad4 could decrease TGF-β1-induced cell proliferation, and that Smad4 overexpression promoted Ts cell apoptosis. In Ts vector control cells, TGF-β1 increased the expression of TβRII, as well as MMP-2, and enhanced cell invasion through the basement membrane, and then induced cell metastasis. However in Ts cells stably expressing Smad4, Smad4 mediated TGF-β1-induced p21 expression promoted cell apoptosis and inhibited cell proliferation, delayed MMP-2 expression, and decreased cell metastasis. Therefore, TGF-β1 plays distinct roles in the Smad4-dependent and -independent signaling pathways. 相似文献
11.
The transforming growth factor type III receptor (TβRIII), also known as β-glycan, is a multi-functional sensor that regulates growth, migration and apoptosis in most cancer cells. We hereby investigated the expression of TβRIII in clinical specimens of tongue squamous cell carcinoma (TSCC) and the underlying mechanism that TβRIII inhibits the growth of CAL-27 human oral squamous cells. The TSCC tissues showed a significant decrease in TβRIII protein expression as detected by immunohistochemistry (IHC) and western blot analysis. Transfection of TβRIII-containing plasmid DNA dramatically promoted TGF-β1 (10 ng/ml)-induced decrease in cell viability, apoptosis and cell arrest at the G0-/G1-phase. Moreover, transient overexpression of TβRIII enhanced the TGF-β1-induced cyclin-dependent kinase inhibitor 2b (CDKN2b) and p38 protein activity, but did not affect the activities of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK1/2) in CAL-27 cells. These results suggest overexpression of TβRIII receptor restored TGF-β1 sensitivity in CAL-27 cells, which may provide some new insights on exploiting this molecule therapeutically. 相似文献
12.
Oral squamous cell carcinoma (OSCC) is a usual oral cancer. Therefore, it's essential to identify targets for its early diagnosis and therapy. This research aimed to explore the roles of human β-defensin-3 (hBD-3) and nuclear factor-kappa B (NF-κB) p65 in the pathogenesis and progression of OSCC. The connection between NF-κB p65 and the carcinogenesis of oral cancer was analyzed by immunohistochemical staining. The relative expressions of hBD-3 and NF-κB p65 in OSCC cells were evaluated by qRT-PCR and Western blot. Afterward, hBD-3 was knocked down, and NF-κB p65 was overexpressed. The cell viability and invasion were tested via CCK-8 and Transwell experiment, and the expression of hBD-3, NF-κB p65, and its downstream molecules was evaluated by Western blot. The expression of NF-κB p65 was increased with the aggravation of the oral submucosal fibrosis. HBD-3 and NF-κB p65 were high-expressed in OSCC cells. The viability and invasion abilities of OSCC cells that knocked down hBD-3 were markedly decreased, while they were restored by the overexpression of NF-κB p65. The expressions of NF-κB p65 and c-myc were diminished while IκB and p21 were raised with the knockdown of hBD-3. After overexpression of NF-κB p65, the expression of hBD-3 and IκB did not change markedly, while c-myc was increased and p21 was decreased dramatically. HBD-3 and NF-κB p65 facilitate the proliferation and invasion of OSCC cells, and hBD-3 may promote this process by governing the expression of NF-κB p65 and its downstream c-myc and p21. 相似文献
13.
14.
Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-α (TNF-α) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-α-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-α could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. 相似文献
15.
Roy S Samanta K Chakraborti T Chowdhury A Chakraborti S 《Archives of biochemistry and biophysics》2011,(1):61-69
We investigated the role of TGF-β1 and TNF-α in mediating the effect of IL-1β in activating proMMP-9 and proMMP-2, and the involvement of an aprotinin sensitive protease in this scenario in bovine pulmonary artery smooth muscle cells. IL-1β induces TGF-β1 mediated stimulation of 92 kDa proMMP-9 and 72 kDa proMMP-2 mRNA and protein expression; whereas, the elevated level of TNF-α promotes activation of proMMP-9 and proMMP-2. Interestingly, TNF-α induced activation of proMMP-9 appeared to be mediated via a 43 kDa aprotinin sensitive protease. TNF-α inhibited aprotinin and TIMP-1 mRNA and protein expression, which apparently facilitated the proteolytic conversion of proMMP-9 to MMP-9 with the involvement of the aprotinin sensitive protease. The aprotinin sensitive protease did not activate proMMP-2 under IL-1β stimulation, albeit a marked inhibition of TIMP-2 mRNA and protein expression were elicited by TNF-α. Thus, IL-1β induced stimulation of the two progelatinases occurs via different mechanisms. 相似文献
16.
TGF-β1-promoted epithelial-to-mesenchymal transfor mation and cell adhesion contribute to TGF-β1-enhanced cell migration in SMMC-7721 cells 总被引:9,自引:0,他引:9
Transforming growth factor-bl (TGF-β1), a multi-function polypeptide, is a double-edged sword in cancer. For some tumor cells, TGF-β1 is a potent growth inhibitor and apoptosis inducer. More commonly, TGF-β1 losesits growth-inhibitory and apoptosis-inducing effects, but stimulates the metastatic capacity of tumor cells. It is currently little known about TGF-β1-promoted cell migration in hepatocellular carcinoma (HCC) cells, let alone its mechanism. In this study, we found that TGF-β1 lost its tumor-suppressive effects, but significantly stimulated cellmigration in SMMC-7721 human HCC cells. By FACS and Western blot analysis, we observed that TGF-β1 enhanced the expression of ct5131 integrin obviously, and subsequently stimulated cell adhesion onto fibronectin(Fn). Furthermore, we observed that TGF-β1 could also promote SMMC-7721 cells adhesion onto laminin (Ln).Our data also provided evidences that TGF-β1 induced epithelial-to-mesenchymal transformation (EMT) in SMMC-7721 cells. First, SMMC-7721 cells clearly switched to the spindle shape morphology after TGF-β1 treatment.Furthermore, TGF-β1 induced the down-regulation of E-cadherin and the nuclear translocation of β1-catenin. These results indicated that TGF-β1-promoted cell adhesion and TGF-β1-induced epithelial-to-mesenchymal transfor-mation might be both responsible for TGF-β1-enhanced cell migration. 相似文献
17.
Fujii M Katase N Lefeuvre M Gunduz M Buery RR Tamamura R Tsujigiwa H Nagatsuka H 《Journal of molecular histology》2011,42(6):499-504
Dickkopf (Dkk)-3, an inhibitor of the Wnt/β-catenin pathway, is reported as a potential tumor suppressor gene in many cancers.
To gain a better comprehension of the mechanisms involved in the carcinogenesis of oral squamous epithelium, protein expression
and localization of Dkk-3 and β-catenin was investigated in normal epithelium, dysplasias and squamous cell carcinoma (SCC).
An increase in β-catenin and Ki-67 expressions was observed from dysplasias to poorly differentiated SCC. Interestingly, an
increase in Dkk-3 positive cells was also noted, which was correlated to the cancer progression step. A change in Dkk-3 localization
during the transformation of normal oral epithelium to SCC was clearly observed. Dkk-3 was localized in the cell membrane
in normal oral epithelium and in dysplasias, whereas that was localized in both cell membrane and cytoplasm in SCC. These
results suggest that Dkk-3 is involved in the carcinogenesis of SCC with a distinct function from those in other cancers. 相似文献
18.
19.
20.
Yang Zheng Zhao Wang Xianbin Xiong Yi Zhong Wei Zhang Yibo Dong Jialiang Li Zaiou Zhu Wei Zhang Heming Wu Wenyi Gu Yunong Wu Xiang Wang Xiaomeng Song 《Journal of cellular physiology》2019,234(5):5940-5952
Notch proteins are highly conserved cell surface receptors which play essential roles in cellular differentiation, proliferation, and apoptotic events at all stages of development. Recently, NOTCH1 mutations have been extensively observed in oral squamous cell carcinoma (OSCC) and are hinted to be Notch1-inactivating mutations. However, little is known about the biological effect of these reported mutations in OSCC. To mimic the inactivation of Notch1 due to inappropriate mutations and to determine the potential mechanisms, we utilized wild-type Notch1 vectors (Notch1WT) or mutant Notch1 vectors (Notch1V1754L) to transfect into OSCC cell lines. Membrane-tethered Notch1 induced by mutation was analyzed by immunofluorescence staining. γ-Secretase inhibitor PF-03084014 was utilized to determine the phenotype in the absence of endogenous Notch1 activation. Here we demonstrated that membrane-tethered Notch1 inactivated the canonical Notch1 signaling and oncogenic phenotypes were identified by promoting cell proliferation and invasion and by inducing epithelial-to-mesenchymal transition in cells. The γ-secretase inhibitor PF-03084014 also showed distinct oncogenic property after treatment. Importantly, both membrane-tethered Notch1 and PF-03084014 inhibitor activated the epidermal growth factor receptor (EGFR)–phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT) signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. This was the first time that we clearly simulated the mutated Notch1 activities and determined the oncogenic phenotypes of membrane-tethered Notch1. Compared with wild-type Notch1, membrane-tethered Notch1 was strongly associated with activated EGFR–PI3K–AKT signaling pathway. 相似文献