首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of dietary mannan oligosaccharide (MOS) (Bio-Mos®, Alltech, USA) on the growth, survival, physiology, bacteria and morphology of the gut and immune response to bacterial infection of tropical rock lobsters (Panulirus ornatus) juvenile were investigated. Dietary inclusion level of MOS at 0.4% was tested against the control diet (trash fish) without MOS inclusion. At the end of 56 days of rearing period, a challenged test was also conducted to evaluate the bacterial infection resistant ability of the lobsters fed the two diets. Lobster juvenile fed MOS diet attained 2.86 ± 0.07 g of total weigh and 66.67 ± 4.76% survival rate which were higher (P < 0.05) than the lobsters fed control diet (2.35 ± 0.14 g total weight and 54.76 ± 2.38% survival rate, respectively) thus providing the higher (P < 0.05) specific growth rate (SGR) and average weekly gain (AWG) of lobsters fed MOS diet. Physiological condition indicators such as wet tail muscle index (Tw/B), wet hepatosomatic index (Hiw) and dry tail muscle index (Td/B) of the lobsters fed MOS supplemented diet were higher (P < 0.05) than that of the lobsters fed the control diet. Bacteria in the gut (both total aerobic and Vibrio spp.) and gut's absorption surface indicated by the internal perimeter/external perimeter ratio were also higher (P < 0.05) when the lobsters were fed MOS diet. Lobsters fed MOS diet were in better immune condition showed by higher THC and GC, and lower bacteraemia. Survival, THC, GC were not different among the lobsters fed either MOS or control diet after 3 days of bacterial infection while bacteraemia was lower in the lobsters fed MOS diet. After 7 days of bacterial infection the lobsters fed MOS diet showed higher survival, THC, GC and lower bacteraemia than the lobsters fed the control diet. The experimental trial demonstrated the ability of MOS to improve the growth performance, survival, physiological condition, gut health and immune responses of tropical spiny lobsters juveniles.  相似文献   

2.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.  相似文献   

3.
The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control diet. Behavioral analysis revealed that animals demonstrated profound anxiety-like behavior as observed by performance on the elevated-plus maze with time spent by the mice in the open arm (ANOVA p = 0.000; NCS:HA7 p = 0.004; NCS:OS-HA7 p = 1.000; HA7:OS-HA7 p = 0.0001) as well as entries in the open arm (ANOVA p = 0.039; NCS:HA7 p = 0.041; HA7:OS-HA7 p = 0.221; NCS:OS-HA7 p = 1.000). Open-field behavior, a measure of general locomotion and exploration, revealed statistically significant differences between groups in locomotion as a measure of transitions across quadrant boundaries. Additionally, the open-field assay revealed decreased exploration as well as decreased rearing in HA7 and OS-HA7 fed mice demonstrating a consistent pattern of increased anxiety-like behavior among these groups. Critically, behavior was not correlated with weight. These results indicate that diets based on resistant starch can be utilized to produce quantifiable changes in the gut microbiota and should be useful to “dial-in” a specific microbiome that is unique to a particular starch composition. However, undesirable effects can also be associated with resistant starch, including lack of weight gain and increased anxiety-like behaviors. These observations warrant careful consideration when developing diets rich in resistant starch in humans and animal models.  相似文献   

4.
Diet-induced obesity and insulin resistance have been linked to changes in bile acid (BA) profiles, which in turn are highly dependent on the dietary composition and activity of the gut microbiota. The objective of the present study was to investigate whether the type and level of fiber had an effect on cecal BA composition when included in low- and high-fat diets. Groups of rats were fed two barley varieties, which resulted in three test diets containing three levels of β-glucans and two levels of dietary fiber. BAs were preconcentrated using hollow fiber liquid-phase microextraction and quantified by gas chromatography. The amount of the secondary BAs, lithocholic-, deoxycholic- and hyodexycholic acids was generally higher in groups fed high-fat diets compared with corresponding acids in groups fed low-fat diets (P<.05). In contrast, most of the primary and the secondary BAs, ursodeoxycholic acid and β- and ω-muricholic acids, were two to five times higher (P<.05) in groups fed low-fat diets than in groups fed high-fat diets. This was particularly true for groups fed the highest level of β-glucans and in some cases also the medium level. The BA profile in the gut was strongly dependent on the amount and type of dietary fiber in the diet, which may be useful in the prevention/treatment of diseases associated with changes in BA profiles.  相似文献   

5.
A total of 30 7-week-old pigs were used to evaluate the effects of chicory inclusion on digestibility, digestive organ size and faecal microbiota. Five diets were formulated: a cereal-based control diet and four diets with inclusion of 80 and 160 g/kg chicory forage (CF80 and CF160), 80 g/kg chicory root (CR80) and a mix of 80 g/kg forage and 80 g/kg chicory root (CFR). Generally, the pigs showed a high growth rate and feed intake, and no differences between the different diets were observed. The coefficients of total tract apparent digestibility (CTTAD) of energy, organic matter and CP did not differ between the control and CF80, whereas they were impaired in diet CF160. The CTTAD of non-starch polysaccharides and especially the uronic acids were higher (P < 0.05) with chicory inclusion, with highest (P < 0.05) values for diet CF160. Coliform counts were lower and lactobacilli : coliform ratio was higher (P < 0.05) in diet CFR than in the control. Global microbial composition was investigated by terminal restriction fragment length polymorphism combined with cloning and sequencing. Analysis of gut microbiota pattern revealed two major clusters where diet CF160 differed from the control and CR80 diet. Chicory forage diets were correlated with an increased relative abundance of one species related to Prevotella and decreased abundance of two other species related to Prevotella. For diet CFR, the relative abundance of Lactobacillus johnsonii was higher than in the other diets. This study shows that both chicory forage and root can be used as fibre sources in pig nutrition and that they modulate the composition of the gut microbiota differently.  相似文献   

6.
Cold resistance of male Sprague Dawley rats (300 g) fed a laboratory chow (P) or a semi-purified diet (T4F or H) for 14 days was evaluated by the degree of hypothermia developed under unrestrained conditions at –18°C or under restraint at +6°C or +1°C. Cold tests were started either at 09:00 h, 14:00 h or 23:00 h. Rats fed a semi-purified diet were more resistant to cold than P-fed rats in winter and summer but not in spring or fall. Cold resistance followed a circadian cycle, being very high at 23:00 h, very low at 14:00 h and in between at 09:00 h. The higher resistance to cold of rats on semi-purified diets coincided with a higher liver glycogen reserve throughout the day and a higher production of corticosterone in stressful conditons than in rats on P diet. However, unrelated diurnal cycles of cold resistance and liver glycogen, absence of hypoglycemia and maintenance of a high level of blood corticosterone in hypothermic rats fed P or semi-purified diets indicate that cold resistance is not limited by glycogen availability in liver or glucose and corticosterone in blood respectively. The lower fecal lactobacilli content found in rats fed a semi-purified diet supports the hypothesis that heat producing organs of these animals may have to compete with a smaller bacterial population in their small intestine for essential nutrients than the P-fed rats which could be a factor in their greater degree of cold resistance.NRCC # 17311  相似文献   

7.
Most plant-origin fiber sources used in pig production contains a mixture of soluble and insoluble non-starch polysaccharides (NSP). The knowledge about effects of these sources of NSP on the gut microbiota and its fermentation products is still scarce. The aim of this study was to investigate effects of feeding diets with native sources of NSP on the ileal and fecal microbial composition and the dietary impact on the concentration of short-chain fatty acids (SCFA) and lactic acid. The experiment comprised four diets and four periods in a change-over design with seven post valve t-cecum cannulated growing pigs. The four diets were balanced to be similar in NSP content and included one of four fiber sources, two diets were rich in pectins, through inclusion of chicory forage (CFO) and sugar beet pulp, and two were rich in arabinoxylan, through inclusion of wheat bran (WB) and grass meal. The gut microbial composition was assessed with terminal restriction fragment (TRF) length polymorphism and the abundance of Lactobacillus spp., Enterobacteriaceae, BacteroidesPrevotellaPorphyromonas and the β-xylosidase gene, xynB, were assessed with quantitative PCR. The gut microbiota did not cluster based on NSP structure (arabinoxylan or pectin) rather, the effect was to a high degree ingredient specific. In pigs fed diet CFO, three TRFs related to Prevotellaceae together consisted of more than 25% of the fecal microbiota, which is about 3 to 23 times higher (P<0.05) than in pigs fed the other diets. Whereas pigs fed diet WB had about 2 to 22 times higher abundance (P<0.05) of Megasphaera elsdenii in feces and about six times higher abundance (P<0.05) of Lactobacillus reuteri in ileal digesta than pigs fed the other diets. The total amount of digested NSP (r=0.57; P=0.002), xylose (r=0.53; P=0.004) and dietary fiber (r=0.60; P=0.001) in ileal digesta were positively correlated with an increased abundance of BacteroidesPrevotellaPorphyromonas. The effect on SCFA was correlated to specific neutral sugars where xylose increased the ileal butyric acid proportion, whereas arabinose increased the fecal butyric acid proportion. Moreover, chicory pectin increased the acetic acid proportion in both ileal digesta and feces.  相似文献   

8.
Alterations of the gut microbiota induced by diet exert a strong influence on the development of metabolic syndrome. In this study, we prove the hypothesis that the long-term high-fat diet (HFD) may influence gut microbiota directly and/or indirectly by changing the redox state. Lipoic acid (LA), as a universal antioxidant, was used to improve the redox state. Reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were analyzed to profile oxidative stress states. PCR-denaturing gradient gel electrophoresis (DGGE) was used to describe gut flora structures, while plate count was employed for the quantitative analysis of Escherichia coli, lactobacilli, and enterococcus. The influence of redox state on the vitality of gut-derived bacteria was measured in vitro. ROS and MDA, which significantly decreased in LA mice compared with HFD mice, showed a strong positive association with E. coli and enterococcus (P?<?0.05) and a negative association with lactobacilli (P?<?0.05). Increased T-AOC in LA mice showed a high positive association with lactobacilli (P?<?0.05) and a negative correlation with E. coli and enterococcus. These correlations implied that the dietary effects on the gut microbiota were conferred, at least in part, through an effect on oxidative stress. This study provides evidence that modulation of the redox state by an antioxidant has the potential to improve gut microbiota, which has relevance for metabolic health.  相似文献   

9.
Recent studies have shown that laboratory murine autoimmunity models under the same environment display different outcomes. We established diabetic nephropathy model mice under the same environment using the classic streptozotocin method. Renal dysfunction was different among the mice. Proteinuria was more significant in the severe proteinuria group (SP) than in the mild proteinuria group (MP). We hypothesized a role for the gut microbiota in the outcome and reproducibility of induced DN models. 16S rDNA gene sequencing technology was used to analyze the differences in the gut microbiota between the two groups. Here, through fecal microbiota transplantation (FMT) and gas chromatography mass spectrometry (GC–MS), we verified the role of the gut microbiota and its short-chain fatty acid (SCFA) generation in DN mouse renal dysfunction. In the SP group, there was a reduced abundance of Firmicutes (P < 0.0001), and the dominant genus Allobaculum [linear discriminant analysis (LDA) >3, P < 0.05] was positively correlated with body weight (Rho = 0.767, P < 0.01) and blood glucose content (Rho = 0.648, P < 0.05), while the dominant genus Anaerosporobacter (LDA > 3, P < 0.05) was positively correlated with 24-hour urinary protein content (Rho = 0.773, P < 0.01). In the MP group, the dominant genus Blautia (LDA > 3, P < 0.05) was negatively correlated with 24-hour urinary protein content (Rho = −0.829, P < 0.05). The results indicated that Allobaculum and Anaerosporobacter may worsen renal function, while Blautia may be a protective factor in DN. These findings suggested that the gut microbiota may contribute to the heterogeneity of the induced response since we observed potential disease-associated microbial taxonomies and correlations with DN.  相似文献   

10.
The effects of oleuropein, a phenolic compound in extra virgin olive oil, on protein metabolism were investigated by measuring testicular testosterone and plasma corticosterone levels in rats fed diets with different protein levels. In Experiment 1, rats were fed experimental diets with different protein levels (40, 25 and 10 g/100 g casein) with or without 0.1 g/100 g oleuropein. After 28 days of feeding, the testosterone level in the testis was significantly higher and the plasma corticosterone level was significantly lower in rats fed the 40% casein diet with oleuropein than in those fed the same diet without oleuropein. The urinary noradrenaline level, nitrogen balance and hepatic arginase activity were significantly higher in rats fed the 40% casein diet with oleuropein supplementation than in those fed the 40% casein diet without oleuropein supplementation. In Experiment 2, the effects of oleuropein aglycone (a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein ingested in the gastrointestinal tracts) on the secretion of luteinizing hormone (LH) from the pituitary gland, which regulates testosterone production in the testis, were investigated in anesthetized rats. Plasma LH level increased dose dependently after the administration of oleuropein aglycone (P<.001, r= 0.691). These findings suggest that dietary supplementation with 0.1 g/100 g oleuropein alters the levels of hormones associated with protein anabolism by increasing urinary noradrenaline and testicular testosterone levels and decreasing plasma corticosterone level in rats fed a high-protein diet.  相似文献   

11.
In current nutrition requirements of swine, although the protein diets are formulated based on the ileal digestibility of protein and amino acid (AA), there is a difference in nitrogen utilisation among various protein diets, which might be related to the AA release kinetics. To evaluate the relationship between AA release kinetics of feed proteins and nitrogen balance in finishing pigs, pigs were fed diets based on casein (CAS) or corn gluten meal (CGM) at normal or low-protein concentrations, and the AA release patterns were assessed. A 2 × 2 full factorial experimental design was used. 24 pigs (Duroc × Landrace × Yorkshire) with an initial weight of 67.0 ± 1.8 kg were randomly assigned to consume a normal-protein casein-based diet (N.CAS, 10% CP), normal-protein corn gluten meal-based diet (N.CGM, 10% CP), low-protein casein-based diet (L.CAS, 8.5% CP), or low-protein corn gluten meal-based diet (L.CGM, 8.5% CP) for 14 days (n = 6 per group; pigs housed and fed separately). The low-protein diets were associated with a more rapid release of AAs in the early stages of gastric digestion than the normal-protein diets. The N.CAS and L.CAS diets were associated with a peak AA release at approximately 4 h during trypsin digestion, whereas N.CGM and L.CGM were at approximately 16 h. The N.CAS diet was associated with the least dispersed release curves and lowest synchronisation indexes, implying that it was associated with the best AA release synchronism, whereas the L.CGM diet was on the contrary. The nitrogen intake (NI), faecal nitrogen, urine nitrogen (UN), total nitrogen, net protein utilisation and apparent biological value (ABV) of protein of pigs fed the L.CAS or L.CGM diets were lower than those fed the N.CAS or N.CGM diets (P < 0.05). Notably, there was a difference in NI (P < 0.05) and trends with respect to UN and ABV (0.05 < P < 0.1), but no differences in retained nitrogen or apparent nitrogen digestibility between pigs fed the N.CAS or L.CAS diets and those fed the N.CGM or L.CGM diets. Pigs fed the N.CAS or N.CGM diets had higher serum concentrations of UN than pigs fed the L.CAS or L.CGM diets (P < 0.05), but there were no differences in serum total protein, albumin, triglyceride, glucose, alanine transaminase, or aspartate aminotransferase between the groups. In addition, there was an interaction between protein level and protein source on serum globulin (P < 0.05). Therefore, the diet with a better AA release synchronism can improve protein utilisation efficiency in finishing pigs and to reduce environmental pollution.  相似文献   

12.
Feeding ruminants a high-grain (HG) diet is a widely used strategy to improve milk yield and cost efficiency. However, it may cause certain metabolic disorders. At present, information about the effects of HG diets on the systemic metabolic profile of goats and the correlation of such diets with rumen bacteria is limited. In the present study, goats were randomly divided into two groups: one was fed the hay diet (hay; n = 5), while the other was fed HG diets (HG; n = 5). On day 50, samples of rumen contents, peripheral blood serum and liver tissues were collected to determine the metabolic profiles in the rumen fluid, liver and serum and the microbial composition in rumen. The results revealed that HG diets reduced (P < 0.05) the community richness and diversity of rumen microbiota, with an increase in the Chao 1 and Shannon index and a decrease in the Simpson index. HG diets also altered the composition of rumen microbiota, with 30 genera affected (P < 0.05). Data on the metabolome showed that the metabolites in the rumen fluid, liver and serum were affected (variable importance projection > 1, P <0.05) by dietary treatment, with 47, 10 and 27 metabolites identified as differentially metabolites. Pathway analysis showed that the common metabolites in the shared key pathway (aminoacyl-transfer RNA biosynthesis) in the rumen fluid, liver and serum were glycine, lysine and valine. These findings suggested that HG diets changed the composition of the rumen microbiota and metabolites in the rumen fluid, liver and serum, mainly involved in amino acid metabolism. Our findings provide new insights into the understanding of diet-related systemic metabolism and the effects of HG diets on the overall health of goats.  相似文献   

13.
Yeast products are potential feed additives due to their beneficial effects on gut health. Thus, we verified the potential impacts of autolysed yeast (AY) on growth performance, blood profiles, gut morphology and microbiota in weaning pigs. In total, 72 castrated, commercial, crossbred, weaning pigs were divided into three groups, with each group consisting of eight replicates with three piglets each. The experimental diets were as follows: 1) control diet (0% AY); 2) diet with 1.0% AY; 3) diet with 3.0% AY. For the overall period, using 1.0% AY in the diet seemed to improve the feed conversion ratio (P = 0.09); whereas, other productive performance parameters were not significantly affected by the supplementations. Using 1.0% AY in the diet significantly decreased the blood urea nitrogen and neutrophil/lymphocyte ratio (N/L ratio) but increased the eosinophil count (P < 0.05). Adding AY to the diet did not influence caecal microbial diversity; using 1.0% AY in the diet decreased the abundances of the phylum Actinobacteria, the class Coriobacteriia and the family Coriobacteriaceae (P < 0.05). At the genus level, an AY inclusion level of 1.0% reduced the abundances of Collinsella, Clostridium and Catenibacterium and increased that of Marvinbryantia (P < 0.05). Furthermore, the abundance of butyrate-producing bacteria seemed to be increased by AY supplementation (P = 0.06). Pearson’s correlation coefficient (r) analysis revealed that AY intake was negatively associated with the abundance of pathogens of the genera Dorea (r = ?0.84; P = 0.03) and Catenibacterium (r = ?0.80; P = 0.04). This indicates that AY intake potentially reduces the population of some pathogenic bacteria at family level. Thus, using an appropriate AY inclusion level (1.0%) seemed to improve the feed use of postweaning pigs and clearly improved their small intestinal morphology, blood profiles and caecal microbiota.  相似文献   

14.
Milk sphingomyelin (SM), a polar lipid (PL) component of milk fat globule membranes, is protective against dyslipidemia. However, it is unclear whether ingestion of milk PLs protect against atherosclerosis. To determine this, male LDLr−/− mice (age 6 weeks) were fed ad libitum either a high-fat, added-cholesterol diet (CTL; 45% kcal from fat, 0.2% cholesterol by weight; n=15) or the same diet supplemented with 1% milk PL (1% MPL; n=15) or 2% milk PL (2% MPL; n=15) added by weight from butter serum. After 14 weeks on diets, mice fed 2% MPL had significantly lower serum cholesterol (−51%) compared to CTL (P<.01), with dose-dependent effects in lowering VLDL- and LDL-cholesterol. Mice fed 2% MPL displayed lower inflammatory markers in the serum, liver, adipose and aorta. Notably, milk PLs reduced atherosclerosis development in both the thoracic aorta and the aortic root, with 2% MPL-fed mice having significantly lower neutral lipid plaque size by 59% (P<.01) and 71% (P<.02) compared to CTL, respectively. Additionally, the 2% MPL-fed mice had greater relative abundance of Bacteroidetes, Actinobacteria and Bifidobacterium, and lower Firmicutes in cecal feces compared to CTL. Milk PL feeding resulted in significantly different microbial communities as demonstrated by altered beta diversity indices. In summary, 2% MPL strongly reduced atherogenic lipoprotein cholesterol, modulated gut microbiota, lowered inflammation and attenuated atherosclerosis development. Thus, milk PL content may be important to consider when choosing dairy products as foods for cardiovascular disease prevention.  相似文献   

15.
The growth of broiler chicks and the mechanisms underlying responses to diets supplemented with commercial non-starch polysaccharides were evaluated. The supplements varied in viscosity and chemical structure and evaluation was conducted over two feeding periods.The viscosity of the four supplements tested ranged from 1.38 cP for alginic acid (AL) to over 2000 cP for guar gum (GG) and gum xanthan (GX). The whole diet followed a similar trend. The ileal digesta viscosity was significantly highest (P<0.001) in chicks that were fed the GX diet.Over a period of 7 days of feeding the diets, there was a significant reduction (P<0.001) in the final body weight and weight gain of chickens on diets supplemented with GG and GX. Supplementation with GG and GX also resulted in a deterioration (P<0.001) in FCR.The weight of the small intestine was higher (P<0.001) on the GG-supplemented diet than on the other diets while small intestinal fill was increased by the presence of GG and GX. There was no significant variation in the mucosal morphometry of birds on the different diets. Jejunal maltase and sucrase activities were highest (P<0.001) in chicks that were fed the AL-supplemented diet and lowest in chicks fed the GX-supplemented diet. The activity of aminopeptidase N in the ileum was stimulated (P<0.05) by GX. The uptake of l-tryptophan into brush-border membrane vesicles was unaffected by NSP supplement.After a second period of feeding the diets containing NSP at half the level present in the first period, final body weight and weight gain were significantly higher (P<0.001) on the gum arabic (GA)-supplemented diet than on the other diets. Absolute feed intake (P<0.05), feed intake per unit of initial body weight (P<0.001) and FCR (P<0.001) were significantly affected by the supplements, being higher in chicks on the GX-supplemented diet than on the other diets.The weight (P<0.001) and capacity (P<0.01) of the small intestine were highest in chicks on the GG- and GX-supplemented diets, respectively. The crypt depth of the jejunal mucosa was higher (P<0.01) in chickens on the GX-supplemented than in the other chickens. Ileal crypts were deepest and villi longest (P<0.05) in chicks on the GG- and GA-supplemented diets, respectively.Jejunal mucosal DNA (P<0.05) and RNA (P<0.001) contents of chicks were significantly increased by the GA-supplemented diet. In the ileum, RNA content (P<0.01) and RNA:DNA ratio (P<0.001) were reduced in chicks raised on the more viscous diets.Ileal maltase activity was also significantly higher (P<0.01) in chicks on the GX diet than in chicks on the other diets. l-Tryptophan uptake by ileal brush-border membranes was lowest (P<0.05) in chicks on the GA-supplemented diet.  相似文献   

16.
《Small Ruminant Research》2007,73(2-3):92-95
Our objective was to study the positive effects of partial replacement of barley grain for corn in high concentrate diets on growth performance of growing lambs, and to determine the minimum amount of corn needed to produce such effects. Thirty-three male Awassi lambs weaned at 60 days of age were divided into three groups of 11 according to their live weight and offered three isonitrogenous diets. The control diet (B) contained 81 and 14% barley grain and wheat straw, respectively (DM basis). Corn grain replaced barley grain at 10 and 20% of dietary DM for low (LC) and high (HC) corn diets, respectively. Barley had a higher (P < 0.05) rate of digestion (11.5%/h) compared with corn (8.3%/h). The in vitro 30-h digestion extent was also higher (P < 0.05) for barley. The digestion rate for the B diet was higher (P < 0.05) compared with the HC diet, whereas the value for the LC diet was intermediate. Lambs fed LC and HC diets consumed more (P > 0.05) DM (average = 855 g/day) compared with lambs fed B diet (757 g/day). DM and CP digestibilities were similar among diets and averaged 67.0 and 64.2%, respectively. Final BW, BW change and average daily gain (ADG) for lambs fed HC were higher (P < 0.05) compared with B and LC. Moreover, lambs that consumed LC tended (P = 0.12) to grow faster than lambs fed B. Feed to gain ratio was lower (P < 0.05) for lambs fed HC (4.6) compared with B and LC (5.2). In summary, positive associative effects of partial replacement of barley with corn in high concentrate diets for fattening sheep were detected. However, a minimum of 20% replacement of dietary DM from barley with corn was needed to positively improve both performance and feed efficiency.  相似文献   

17.
目的:探究高脂饮食中添加短链菊粉对小鼠肠道菌群的影响。方法:选择8周龄雄性小鼠,5只喂食高脂饲料,5只喂食10%菊粉复合型高脂饲料,喂食8周后收集小鼠粪便,检测小鼠粪便中三种主要的短链脂肪酸。同时,提取小鼠粪便中的细菌基因组,对菌群基因组16S rRNA基因V4高变区进行测序,对数据进行PCoA分析、Alpha多样性分析、LEfSe分析和16S功能预测。结果:菊粉添加后,小鼠粪便中含有的细菌DNA量增多,短链脂肪酸增加。菊粉组和对照组PCoA图可以看到明显聚类。菊粉组物种多样性低于对照组。菊粉组小鼠粪便中S24_7菌科丰度上升;Lachnospiraceae(毛螺菌科),Ruminococcaceae(瘤胃菌科)和Deferribacteraceae(脱铁杆菌科)丰度下降。16S基因功能预测发现22个第二层级的KEGG通路发生变化。结论:高脂饮食情况下短链菊粉的添加会改变小鼠肠道菌群,继而影响肠道菌群的功能。  相似文献   

18.
In this study, the hypolipidemic and antioxidant properties of Ganoderma lucidum CG 144, a medicinal mushroom cultivated on wet wheat grains by solid-state fermentation, were investigated followed dietary supplementation. Basal chow was supplemented with 85, 50, or 10% of G. lucidum CG 144 dried spawn, resulting in G85, G50, and G10 diets, respectively, and fed to normocholesterolemic and induced-hypercholesterolemic mice. The G85 diet triggered significant loss of body weight compared with the G50 and G10 diets (P < 0.01). In the normocholesterolemic mice, regular consumption of high concentrations (G85 and G50 diets) of dried spawn led to significant changes in the plasma lipid concentrations (P < 0.05). Although there were no significant changes in the plasma cholesterol concentrations, the G85 and G50 diets decreased the low-density-lipoprotein (LDL) cholesterol levels by 71 and 98%, respectively, and increased the high-density-lipoprotein (HDL) cholesterol levels by 80 and 86%, respectively. Further, the plasma triacylglycerol levels decreased by 32.5 and 42% with the G85 and G50 diets, respectively. The G10 diet did not alter the plasma lipid profile in the normocholesterolemic mice (P > 0.05) but significantly decreased the cholesterol concentrations (P < 0.001) in the induced-hypercholesterolemic mice. Peritoneal macrophages from the induced-hypercholesterolemic mice fed the G10 diet produced lower nitric oxide than the controls (P < 0.05).  相似文献   

19.
Alanyl-glutamine (Ala-Gln), a highly soluble and stable glutamine dipeptide, is known to improve gut integrity and function. The aim of this study was to evaluate whether dietary Ala-Gln supplementation could improve growth performance, intestinal development and digestive-absorption function in weaned piglets. A total of 100 purebred Yorkshire piglets weaned at 21 days of age were assigned randomly to four dietary treatment groups and fed a basal diet (control group) or a basal diet containing 0.15%, 0.30% and 0.45% Ala-Gln, respectively. Compared with the control group, piglets fed the Ala-Gln diets had higher average daily gain and lower feed : gain and diarrhea rate (P < 0.05). Moreover, dietary Ala-Gln supplementation increased villous height and villous height : crypt depth ratio in duodenum and jejunum (P < 0.05), as well as the activities of maltase and lysozyme in jejunum mucosa (P < 0.05). In addition, a decrease in serum diamine oxidase activity and crypt depth in duodenum and jejunum was observed in piglets fed the Ala-Gln diets (P < 0.05). Serum cytosolic phospholipase A2 (cPLA2) concentration and gene expression of cPLA2, Na+-dependent glucose transporter 1, glucose transporter 2 and peptide transporter 1 in jejunum were increased by feeding Ala-Gln diets relative to control diet (P < 0.05). These results indicated that feeding Ala-Gln diet has beneficial effects on the growth performance of weaned piglets, which associated with maintaining intestinal morphology and digestive-absorption function.  相似文献   

20.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号