首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transferrin receptor 1 (TfR1) is a ubiquitous type II membrane receptor with 61 amino acids in the N-terminal cytoplasmic region. TfR1 is highly expressed in cancer cells, particularly under iron deficient conditions. Overexpression of TfR1 is thought to meet the increased requirement of iron uptake necessary for cell growth. In the present study, we used transferrin (Tf), a known ligand of TfR1, and gambogic acid (GA), an apoptosis-inducing agent and newly identified TfR1 ligand to investigate the signaling role of TfR1 in breast cancer cells. We found that GA but not Tf induced apoptosis in a TfR1-dependent manner in breast cancer MDA-MB-231 cells. Estrogen receptor-positive MCF-7 cells lack caspase-3 and were not responsive to GA treatment. GA activated the three major signaling pathways of the MAPK family, as well as caspase-3, -8, and Poly(ADP-ribose)polymerase apoptotic pathway. Interestingly, only Src inhibitor PP2 greatly sensitized the cells to GA-mediated apoptosis. Further investigations by confocal fluorescence microscopy and immunoprecipitation revealed that Src and TfR1 are constitutively bound. Using TfR1-deficient CHO TRVB cells, point mutation studies showed that Tyr(20) within the (20)YTRF(23) motif of the cytoplasmic region of TfR1 is the phosphorylation site by Src. TfR1 Tyr(20) phosphomutants were more sensitive to GA-mediated apoptosis. Our results indicate that, albeit its iron uptake function, TfR1 is a signaling molecule and tyrosine phosphorylation at position 20 by Src enhances anti-apoptosis and potentiates breast cancer cell survival.  相似文献   

2.
Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression.Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well.Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin.Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.  相似文献   

3.
Growing evidence confirms that ferroptosis plays an important role in tumor growth inhibition. However, some non-small-cell lung cancer (NSCLC) cell lines are less sensitive to erastin-induced ferroptotic cell death. Elucidating the mechanism of resistance of cancer cells to erastin-induced ferroptosis and increasing the sensitivity of cancer cells to erastin need to be addressed. In our experiment, erastin and acetaminophen (APAP) cotreatment inhibited NSCLC cell viability and promoted ferroptosis and apoptosis, accompanied with attenuation of glutathione and ectopic increases in lipid peroxides. Erastin and APAP promoted NSCLC cell death by regulating nucleus translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); and the ferroptosis induced by erastin and APAP was abrogated by bardoxolone methyl (BM) with less generation of reactive oxygen species and malondialdehyde. As a downstream gene of Nrf2, heme oxygenase-1 expression decreased significantly with the cotreatment of erastin and APAP, which could be rescued by BM. In vivo experiment showed that the combination of erastin and APAP had a synergic therapeutic effect on xenograft of lung cancer. In short, the present study develops a new effective treatment for NSCLC by synergizing erastin and APAP to induce ferroptosis.  相似文献   

4.
5.
6.
Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+, malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+, MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.  相似文献   

7.
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.  相似文献   

8.
Transferrin receptor (TfR/CD71) deserves attention as a selective target for cancer therapy due to its higher expression in tumors versus normal tissues. Also, it has been shown the mouse-derived monoclonal antibody against TfR can significantly inhibit the proliferation of tumor cells. Through constructing the chimeric antibody against TfR, the antigenicity of antibody can be weakened, and most importantly, the antitumor effect of antibody can be strengthened by the introduction of the human Fc fragment. In previous studies, we successfully constructed the human-mouse chimeric antibody against TfR (D2C) and demonstrated that its Fab fragment could specially recognize the TfR on the surface of target cells. In this study, through labeling the chimeric antibody D2C with 125I, we calculated the affinity constant (Ka) of 9.34–9.62×109 l/mol for this antibody according to the Scatchard drawing method. Moreover, in vivo studies in nude mice-bearing human liver cancer (SMMC-7721) xenografts have shown that the radioactivity distribution ratio of 131I-D2C on T/NT was 2–14:1 or 3–21:1 on the seventh day after intraperitoneal or intratumoral injection of 131I-labeled D2C (131I-D2C). These evidences indicated that the in vivo distribution of D2C display the characteristics of certain tumor-specificity localization. In vitro studies, D2C can induce the apoptosis of K562 through the mitochondria death pathway and arrest the cell at G1 phase, as determined by cell cycle analysis. Using the human tumor cells (K562, CEM, and SMMC-7721) expressing TfR as target cells, and normal human PBMC as effector cells, Fc fragment of D2C can perform both the antibody-dependent cell-mediated cytotoxicity and the complement-dependent cytotoxicity. Together, it was demonstrated that the D2C display a tumor-specificity distribution, and has a strong antitumor effect. Thus, it has the potential therapeutic significance.Ye Qing and Wang Shuo contributed equally to this work.  相似文献   

9.
Sorafenib, a protein kinase inhibitor approved for the treatment of hepatocellular carcinoma and advanced renal cell carcinoma, has been repeatedly reported to induce ferroptosis by possibly involving inhibition of the cystine/glutamate antiporter, known as system xc. Using a combination of well-defined genetically engineered tumor cell lines and canonical small molecule ferroptosis inhibitors, we now provide unequivocal evidence that sorafenib does not induce ferroptosis in a series of tumor cell lines unlike the cognate system xc inhibitors sulfasalazine and erastin. We further show that only a subset of tumor cells dies by ferroptosis upon sulfasalazine and erastin treatment, implying that certain cell lines appear to be resistant to system xc inhibition, while others undergo ferroptosis-independent cell death. From these findings, we conclude that sorafenib does not qualify as a bona fide ferroptosis inducer and that ferroptosis induced by system xc inhibitors can only be achieved in a fraction of tumor cell lines despite robust expression of SLC7A11, the substrate-specific subunit of system xc.Subject terms: Cell death, Small molecules  相似文献   

10.
11.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

12.
People suffering from hereditary hemochromatosis (HH) can not regulate the uptake of iron properly and gradually accumulate iron in their body over their lifetime. The protein involved in HH, HFE, has been recently identified as a class I major histocompatibility complex (MHC) homolog. The wild-type HFE associates and co-traffics with the transferrin receptor (TfR). The mutation responsible for 83% of HH (C260Y) results in the failure of HFE to form a critical disulfide bond, bind β2 microglobulin, bind TfR, and traffic to the cell surface. In non-polarized cells, the partnership of HFE and TfR results in decreased iron uptake into cells. The mechanism whereby a class I MHC homolog modifies the function of a membrane receptor and how this dynamic complex of molecules regulates iron transport across intestinal epithelial cells is the subject of this review.  相似文献   

13.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   

14.
This paper investigates the extent to which Cu loading influences Fe levels in HepG2 cells and the effect on proteins regulated by Fe status. Cu supplementation increased Cu content 3-fold, concomitant with a decrease in cellular Fe levels. Intracellular levels of both transferrin (Tf) and ceruloplasmin (Cp) protein rose in parallel with increased secretion into the culture media. There was no increase in mRNA levels for either protein. Rather, our data suggested increased translation of the mRNA. The increase was not reflected in total protein synthesis, which actually decreased. The effect was not a generalised stress or cell damage response, since heat shock protein 70 levels and lactate dehydrogenase secretion were not significantly altered. To test whether the Cu effect could be acting though the decrease in Fe levels, we measured transferrin receptor (TfR) levels using 125I labeled Tf and mRNA analysis. Neither protein nor mRNA levels were changed. Neither was the level of ferroportin mRNA. As a positive control, Fe chelation increased Tf and Cp secretion significantly, and TfR mRNA levels rose 2-fold. We excluded the possibility that the increased Cp or Tf could provide the required substrate to stimulate Fe efflux, and instead demonstrate that Cu can substitute for Fe in the iron regulatory protein - iron responsive element regulation mechanism.  相似文献   

15.
The kinetics and thermodynamics of Ga(III) exchange between gallium mononitrilotriacetate and human serum transferrin as well as those of the interaction between gallium-loaded transferrin and the transferrin receptor 1 were investigated in neutral media. Gallium is exchanged between the chelate and the C-site of human serum apotransferrin in interaction with bicarbonate in about 50 s to yield an intermediate complex with an equilibrium constant K 1 = (3.9 ± 1.2) × 10−2, a direct second-order rate constant k 1 = 425 ± 50 M−1 s−1 and a reverse second-order rate constant k −1 = (1.1 ± 3) × 104 M−1 s−1. The intermediate complex loses a single proton with proton dissociation constant K 1a = 80 ± 40 nM to yield a first kinetic product. This product then undergoes a modification in its conformation which lasts about 500 s to produce a second kinetic intermediate, which in turn undergoes a final extremely slow (several hours) modification in its conformation to yield the gallium-saturated transferrin in its final state. The mechanism of gallium uptake differs from that of iron and does not involve the same transitions in conformation reported during iron uptake. The interaction of gallium-loaded transferrin with the transferrin receptor occurs in a single very fast kinetic step with a dissociation constant K d = 1.10 ± 0.12 μM and a second-order rate constant k d = (1.15 ± 0.3) × 1010 M−1 s−1. This mechanism is different from that observed with the ferric holotransferrin and suggests that the interaction between the receptor and gallium-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of gallium incorporation by the transferrin receptor-mediated iron-acquisition pathway is discussed.  相似文献   

16.
Cancer stem cells (CSCs) are an important cause of tumor recurrence and drug resistance. As a new type of cell death that relies on iron ions and is strictly regulated by intracellular and extracellular signals, the role of ferroptosis in tumor stem cells deserves extensive attention. Mass spectrum was applied to screen for ferroptosis-related proteins in gastric cancer (GC). Sphere-formation assay was used to estimate the stemness of gastric cancer stem cells (GCSCs). Exosomal lnc-ENDOG-1:1 (lncFERO) was isolated by ultracentrifugation. Ferroptosis was induced by erastin and was assessed by detecting lipid ROS, mitochondrial membrane potential, and cell death. Furthermore, a series of functional in vitro and in vivo experiments were conducted to evaluate the effects of lncFERO on regulating ferroptosis and chemosensitivity in GCSCs. Here, we showed that stearoyl-CoA-desaturase (SCD1) played a key role in regulating lipid metabolism and ferroptosis in GCSCs. Importantly, exosomal lncFERO (exo-lncFERO) derived from GC cells was demonstrated to promote SCD1 expression by directly interacting with SCD1 mRNA and recruiting heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which resulted in the dysregulation of PUFA levels and the suppression of ferroptosis in GCSCs. Moreover, we found that hnRNPA1 was also involved in lncFERO packing into exosomes in GC cells, and both in vitro and in vivo data suggested that chemotoxicity induced lncFERO secretion from GC cells by upregulating hnRNPA1 expression, leading to enhanced stemness and acquired chemo-resistance. All these data suggest that GC cells derived exo-lncFERO controls GCSC tumorigenic properties through suppressing ferroptosis, and targeting exo-lncFERO/hnRNPA1/SCD1 axis combined with chemotherapy could be a promising CSC-based strategy for the treatment of GC.Subject terms: Stem-cell research, Gastric cancer  相似文献   

17.
Renal ischaemia-reperfusion (IR) is a major cause of acute kidney injury (AKI). Cold-inducible RNA-binding protein (CIRBP) may contribute to AKI because its deficiency protects against renal IR injury in a mechanism believed to involve ferroptosis. We aimed to investigate whether ferroptosis is associated with CIRBP-mediated renal damage. The differential expression of CIRBP was examined in tubular epithelial (HK2) cells during hypoxia-reoxygenation (HR) or in response to erastin, an inducer of ferroptosis. CIRBP expression was increased in response to HR or erastin in HK2 cells but the silencing of CIRBP inhibited HR and erastin-induced ferroptosis together with ferritinophagy. We discovered an interaction between CIRBP and ELAVL1 using STRING software, which was verified through co-immunoprecipitation and fluorescence colocalization assays. We found that ELAVL1 is a critical regulator in the activation of ferritinophagy and the promotion of ferroptosis. HR or erastin also induced the expression of ELAVL1. An autophagy inhibitor (hydroxychloroquine) or si-ELAVL1 transfection reversed CIRBP-enhanced ferritinophagy activation and ferroptosis in HK2 cells under HR. Injection of anti-CIRBP antibody into a mouse model of IR inhibited ferroptosis and decreased renal IR injury in vivo. In summary, our results provide evidence that ferritinophagy-mediated ferroptosis could be responsible for CIRBP-enhanced renal IR injury.  相似文献   

18.
The transferrin receptor family is represented by at least seven different homologous proteins in primates. Transferrin receptor (TfR1) is a type II membrane glycoprotein that, as a cell surface homodimer, binds iron-loaded transferrin as part of the process of iron transfer and uptake. Other family members include transferrin receptor 2 (TfR2), glutamate carboxypeptidase II (GCP2 or PSMA), N-acetylated α-linked acidic dipeptidase-like protein (NLDL), N-acetylated α-linked acidic dipeptidase 2 (NAALAD2), and prostate-specific membrane antigen-like protein (PMSAL/GCPIII). We compared 86 different sequences from 24 different species, from mammals to fungi. Through this comparison, we have identified several highly conserved residues specific to each family not previously associated with clinical mutations. The evolutionary history of the TfR/GCP2 family shows repeated episodes of duplications consistent with recent theories that nondispensable, slowly evolving genes are more likely to form multiple gene families. [Reviewing Editor: Dr. Gail Simmons]  相似文献   

19.
Transferrin receptor 2 (TfR2), a homologue of the classical transferrin receptor 1 (TfR1), is found in two isoforms, α and β. Like TfR1, TfR2α is a type II membrane protein, but the β form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2α, we expressed the protein with FLAG tagging in transferrin-receptor-deficient Chinese hamster ovary cells. The association constant for the binding of diferric transferrin (Tf) to TfR2α is 5.6 × 106 M 1, which is about 50 times lower than that for the binding of Tf to TfR1, with correspondingly reduced rates of iron uptake. Evidence for Tf internalization and recycling via TfR2α without degradation, as in the TfR1 pathway, was also found. The interaction of TfR2α with Tf was further investigated using atomic force microscopy, a powerful tool used for investigating the interaction between a ligand and its receptor at the single-molecule level on the living cell surface. Dynamic force microscopy reveals a difference in the interactions of Tf with TfR2α and TfR1, with Tf-TfR1 unbinding characterized by two energy barriers, while only one is present for Tf-TfR2. We speculate that this difference may reflect Tf binding to TfR2α by a single lobe, whereas two lobes of Tf participate in binding to TfR1. The difference in the binding properties of Tf to TfR1 and TfR2α may help account for the different physiological roles of the two receptors.  相似文献   

20.
We report that cytosine arabinoside (Ara-C), a cytosine analogue that at low doses causes phenotypical changes on human leukemia cells in vitro and in vivo, induces growth inhibition of oropharyngeal cancer KB and lung adenocarcinoma A549 cell lines. An increase in the number of epidermal growth factor and transferrin receptors (EGFR, TrfR) is induced by Ara-C on these cells. Maximal EGFR up-regulation occurs 96 h after the beginning of Ara-C exposure while maximal TrfR up-regulation is detected 24 h later. These effects occur without changes in the affinity of EGFR and TrfR for their ligands. Two classes of EGF-binding sites with aK d of 0.055 nM and 2.3 nM respectively, and one class of transferrin-binding sites with aK d of about 4 nM are detected on both untreated and Ara-C-treated KB cells. [3H]Thymidine uptake is clearly stimulated on KB cells by nanomolar concentrations of EGF and transferrin, whereas in Ara-C-treated cells [3H]thymidine uptake is not increased by EGF and transferrin under conditions where maximal EGFR and TrfR up-regulation occurs. The enhanced EGF and transferrin binding is paralleled by a twofold increase of in vitro targeting of Ara-C-treated KB and A549 cells with anti-EGFR 108.1 mAb and anti-TrfR OKT9 mAb. We propose that Ara-C could provide a new approach for the improvement of the therapeutic index of anti-EGFR and anti-TrfR immunoconjugates.This work has been supported by the Italian Association for Cancer Research (A.I.R.C.) and by the National Council of Research (C.N.R.) of Italy, contract 92.02274.PF39  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号