首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The cluster effect is an effective strategy to explore new lead compounds, and has been successfully applied in rational drug design and screening. A series of novel organophosphorous-homodimers were designed and synthesized based on the dual-site structure characteristics of acetylcholinesterase (AChE). The compounds were evaluated in vitro for their inhibitory activity to AChE extracted from Drosophila melanogaster and Musca domestic. Compound 4H showed an excellent inhibitor activity to both Drosophila melanogaster and Musca domestic with the corresponding IC50 values of 23 and 168 nM, respectively. Meanwhile, its activities against Drosophila melanogaster and Musca domestic AChE were more than 10,00,000 and 100,000-fold higher compared with the parent compound (MH), and was up to 245 and 107-fold higher than those of the positive control omethoate. The molecular docking study revealed that 4H possessed an optimal spacer length and can perfectly fit into the central pocket, active gorge, and peripheral site of DmAChE, and consequently exhibited highly improved inhibitor potency to DmAChE. The bioassay tests showed that 4 series compounds showed prominent insecticidal activities against both Lipaphser erysimi and Tetranychus cinnbarinus at a concentration of 200 mg/L. The insecticide activity of compound 4H was particularly significant that can cause 96% mortality to Tetranychus cinnbarinus after 24 h of treatment.  相似文献   

2.
Ralstonia solanacearum is a harmful pathogen that causes severe wilt disease in several vegetables. In the present study, we identified R. solanacearum from wilt of papaya by 16S rRNA PCR amplification. Virulence ability of R. solanacearum was determined by amplification of approximately 1500 bp clear band of hrpB gene. Further, in-vitro seed germination assay showed that R. solanacearum reduced the germination rate up to 26.21%, 34% and 33.63% of cucumber, bottle guard and pumpkin seeds, respectively whereas shoot and root growth were also significantly decreased. Moreover, growth inhibition of R. solanacearum was recorded using antibacterial compound from medicinal plant and antagonistic B. subtilis. Petroleum ether root extract of Rauvolfia serpentina showed highest 22 ± 0.04 mm diameter of zone of inhibition where methanolic extract of Cymbopogon citratus and ethanolic extract of Lantana camara exhibited 20 ± 0.06 mm and 20 ± 0.01 mm zone of inhibition against R. solanacearum, respectively. In addition, bioactive compounds of B. subtilis inhibited R. solanacearum growth by generating 17 ± 0.09 mm zone of inhibition. To unveil the inhibition mechanism, we adopted chemical-protein interaction network and molecular docking approaches where we found that, rutin from C. citratus interacts with citrate (Si)-synthase and dihydrolipoyl dehydrogenase of R. solanacearum with binding affinity of −9.7 kcal/mol and −9.5 kcal/mol while quercetin from B. subtillis interacts with the essential protein F0F1 ATP synthase subunit alpha of the R. solancearum with binding affinity of −6.9 kcal/mol and inhibit the growth of R. solanacearum. Our study will give shed light on the development of eco-friendly biological control of wilt disease of papaya.  相似文献   

3.
Enzyme spectrophotometric assays based on acetylcholinesterase (AChE) inhibition were used in combination with Artificial Neural Network (ANN) chemometric analysis for the resolution of pesticides mixtures of chlorpyriphos, dichlorvos and carbofuran. Electric eel (EE) AChE and the recombinant B394-AChE from Drosophila melanogaster were selected due to their different sensitivities to insecticides. These enzymes were used in association with phosphotriesterase (PTE), an enzyme allowing to discriminate between organophosphate and carbamate insecticides. The combined response of three enzymes systems composed of EE-AChE, EE-AChE + PTE, and B394-AChE + PTE was modelled by means of ANN. Specifically, an ANN was constructed where the structure providing the best modelling was a single hidden layer containing four neurons. To prove the concept, a study to resolve pesticide mixtures was done with spectrophotometric measurements. Finally the developed system was successfully applied to the determination of carbofuran, CPO and dichlorvos pesticides in real water samples.  相似文献   

4.
Three series of salicylanilides, esters of N-phenylsalicylamides and 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides, in total thirty target compounds were synthesized and characterized. The compounds were evaluated against seven bacterial and three mycobacterial strains. The antimicrobial activities of some compounds were comparable or higher than the standards ampicillin, ciprofloxacin or isoniazid. Derivatives 3f demonstrated high biological activity against Staphylococcus aureus (?0.03 μmol/L), Mycobacterium marinum (?0.40 μmol/L) and Mycobacterium kansasii (1.58 μmol/L), 3g shows activity against Clostridium perfringens (?0.03 μmol/L) and Bacillus cereus (0.09 μmol/L), 3h against Pasteurella multocida (?0.03 μmol/L) and M. kansasii (?0.43 μmol/L), 3i against methicillin-resistant S. aureus and B. cereus (?0.03 μmol/L). The structure–activity relationships are discussed for all the compounds.  相似文献   

5.
The pyrrolidine-2,4-dione derivatives were used to conduct a larvicidal test on Culex quinquefasciatus larvae of the second instar. Mannich base condensation method was used to synthesis the pyrrolidine-2,4-dione derivatives by grindstone method. The reaction conditions were mild, resulting in high yields. An analysis of the synthesized compounds was carried out using FTIR, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. Synthesized compounds (1a-h) were evaluated for larvicidal activities. Compound 1e (LD50: 26.06 µg/mL), and 1f (LD50: 26.89 µg/mL), and were notably more active against Culex quinquefasciatus than permethrin (LD50: 26.14 µg/mL). The docking studies also demonstrated that 1e, and 1f are potent larvicides with higher binding energy (?12.6 kcal/mol) than the control in the mosquito odorant binding protein (PDB ID: 3OGN). The larvicidal properties of lead molecules have made them important for use as insecticides.  相似文献   

6.
Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 μM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of −1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (log P = 2.66), suggesting a potential ability to penetrate the blood–brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer’s agents.  相似文献   

7.
The present study explored anti-methanogenic properties of rhubarb compounds using in silico analysis on methyl-coenzyme M reductase (MCR) for identifying its anti-methanogen mechanism. To identify pharmacokinetics of 35 compounds from rhubarb, molecular docking and ADME analysis were performed against MCR using AutoDockVina, FAFDrugs3 and PROTOX programs. Docking results successfully indicated three possible candidate compounds 9,10-anthracenedione, 1,8-dihydroxy-3-methyl (?6.92 kcal/mol); phthalic acid isobutyl octadecyl ester (?5.26 kcal/mol); and diisooctyl phthalate (?5.61 kcal/mol) showed minimum binding energy (kcal/mol) with the target protein MCR which catalyze the biosynthesis of rumen methane. In conclusion, the identified compounds showed the most docking fitness score against the target methyl-coenzyme M reductase and the decrease in ruminal methane emission by rhubarb might be a result of these compounds by inhibition of methanogenesis.  相似文献   

8.
4-Vinylcyclohexene (VCH) is a dimer of 1,3-butadiene produced as a by-product of pesticides, plastic, rubber, flame retardants, and tire production. Although, several studies have reported the ovotoxicity of VCH, information on a possible involvement of oxidative stress in the toxicity of this occupational chemical is scarce. Hence, this study was carried out to investigate further possible mechanisms of toxicity of VCH with a specific emphasis on oxidative stress using a Drosophila melanogaster model. D. melanogaster (both genders) of 1 to 3 days old were exposed to different concentrations of VCH (10 µM–1 mM) in the diet for 5 days. Subsequently, the survival and negative geotaxis assays and the quantification of reactive oxygen species (ROS) generation were determined. In addition, we evaluated RT-PCR expressions of selected oxidative stress and antioxidant mRNA genes (HSP27, 70, and 83, SOD, Nrf-2, MAPK2, and catalase). Furthermore, catalase, glutathione-S-transferase (GST), delta aminolevulinic acid dehydratase (δ-ALA-D), and acetylcholinesterase (AChE) activities were determined. VCH exposure impaired negative geotaxic behavior and induced the mRNA of SOD, Nrf-2, and MAPK2 genes expressions. There were increases in catalase and ROS production, as well as inhibitions of GST, δ-ALA-D, and AChE activities (P<0.05). Our results suggest that the VCH mechanism of toxicity is associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant balance, and possible neurotoxic consequences due to decreased AChE activity, and impairments in negative geotaxic behavior. Thus, we conclude that D. melanogaster is a useful model for investigating the toxicity of VCH exposure, and here, we have provided further insights on the mechanism of VCH-induced toxicity.  相似文献   

9.
Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala301 site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach.  相似文献   

10.
BackgroundCyclooxygenase-2 (COX-2) is an important enzyme with numerous biological functions. Overexpression of COX-2 has been associated with various inflammatory-related diseases and therefore, projected as an important pharmacological target.PurposeWe aimed to investigate the inhibitory potential of isolated bioactive compounds, 3-caffeoyl-4-dihydrocaffeoyl quinic acid (CDQ) and isorhamnetin 3-O-β-d-glucopyranoside (IDG), from Salicornia herbacea against COX-2 using both computational and in vitro approaches.MethodsComputational analysis, including molecular docking, molecular dynamics (MD) simulations, and post-simulations analysis, were employed to estimate the binding affinity and stability of CDQ and IDG in the catalytic pocket of COX-2 against Celecoxib as positive control. These predictions were further evaluated using in vitro enzyme inhibition as well as gene expression mediation in macrophages cells.ResultsMolecular docking analysis revealed substantial binding energy of CDQ (-6.1 kcal/mol) and IDG (-5.9 kcal/mol) with COX-2, which are lower than Celecoxib (-8.1 kcal/mol). MD simulations (100 ns) and post simulation analysis exhibited the substantial stability and binding affinity of docked CDQ and IDG compounds with COX-2. In vitro assays indicated significant COX-2 inhibition by CDQ (IC50 = 76.91 ± 2.33 μM) and IDG (IC50 = 126.06 ± 9.44 μM). This result supported the inhibitory potential of isolated bioactive compounds against COX-2. Also, a cellular level study revealed a downregulation of COX-2 expression in tumor necrosis factor-alpha stimulated RAW 264.7 macrophages treated with CDQ and IDG.ConclusionComputational and experimental analysis of CDQ and IDG from S. herbacea established their potential in the inhibition and mediation of COX-2. Hence, CDQ and IDG can be considered for therapeutic development against COX-2 linked disorders, such as inflammation and cancer. Furthermore, CDQ and IDG structures can be served as a lead compound for the development of advanced novel anti-inflammatory drugs.  相似文献   

11.
Tanacetum L. species traditionally used for insecticidal purposes as well as in folk medicine for their antitumor, antimicrobial, antifungal activities. In our previous study a novel sesquiterpene lactone and triterpene lactone together with 12 known flavonoids, coumarin and a triterpene were isolated from T. chiliophyllum var. oligocephalum and T. chiliophyllum var. monocephalum extracts which have insecticidal and antimicrobial activity. In this study, cytotoxic, antimicrobial activities and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory effects of pure compounds isolated from these plants were investigated. The tested compounds showed AChE and BChE inhibition which ranged between 7.20–80.37% and 9.19%–76.99% respectively. The highest AChE and BChE inhibition was observed for ulubelenolide which afforded 80.37% and 76.99% inhibition respectively. The cytotoxic effect of the compounds ranged between 22.34–49.77 μg/mL IC50 values. Highest cytotoxic activity was observed against MCF-7 and HEK 293 cell line by 5–hydroxy-3′,4′,7-trimethoxy flavone and 5-hydroxy-3′,4′,6,7-tetramethoxyflavone that produced 25.80 ± 0.17 and 22.34 ± 0.70 IC50 values respectively. Compounds eupatilin, cirsilineol, 5–hydroxy-3′,4′,7-trimethoxy flavone and ulubelenolide showed significant antimicrobial effect on C. albicans with 7.8 μg/mL MIC. The new compound ulubelenolide afforded high AChE and BChE inhibition as well as high antifungal activity. In our opinion activity of this substance should be evaluated further against other fungal species.  相似文献   

12.
The use of chemical insecticides in agriculture has posed several challenges to environment and ecosystem health. Pesticides of biological origin are considered to be suitable for sustainable environment. In the present study bioactive compounds from Penicillium sp. was isolated and tested for insecticidal activity on Spodoptera litura and Culex quinquefasciatus larvae. Ethyl acetate extract of Penicillium sp. were characterized using GC–MS and FT-IR analysis. GC–MS analysis showed 20 different bioactive compounds namely, Propanoic acid, ethyl ester, Acetic Acid, Propyl Ester, Isopentyl Acetate, Acetic Acid, 2-Methylpropyl Ester, Behenic alcohol, 1-Hexadecene, 1-Octadecene, 1-Hexacosanol, n-Hexadecanoic acid, 1-Tetradecanol, 1-Dodecene, Tetrydamine, and Octadecanoic acid. The presence of functional groups such as, chloroalkanes, sulfonates, phosphines, amines, carboxylic acid, alkanes, and isocyanates was identified by using FTIR. Ethyl acetate extract of Penicillium sp., were tested for larvicidal activity on Spodoptera litura and Culex quinquefasciatus larvae showed significant larval mortality after 48 h of exposure with LC50: 72.205 mg/ml: LC90: 282.783 mg/ml and LC50: 94.701 mg/ml: LC90:475.049 mg/ml respectively. High antifeedant activity was observed in 300 μg/ml at 48 h of crude extract exposure. The present study concludes that Penicillium sp., secondary metabolites are effective for control of Spodoptera litura and Culex quinquefasciatus larvae.  相似文献   

13.
Objectives

To elucidate the molecular mechanisms involved in the substrate interaction of the bile salt hydrolase of Lactobacillus reuteri CRL 1098 (LrBSH) with bile acids (BAs) and to evaluate potential enzyme inhibitors based on computer and in vitro modeling assays.

Results

Asp19, Asn79, and Asn171 participated in the LrBSH interaction with all BAs tested while Leu56 and Glu 222 played an important role in the interaction with glyco- and tauro-conjugated BAs, respectively. A great percentage of hydrophobic and polar interactions were responsible for the binding of LrBSH with glyco- and tauro-conjugated BAs, respectively. Remarkably, the four binding pocket loops participated in the substrate binding site of LrBSH unlike most of the reported BSHs. Inhibition assays showed that ascorbic acid, citric acid, penicillin G, and ciprofloxacin decreased LrBSH activity by 47.1%, 40.14%, 28.8%, and 9%, respectively. Docking analysis revealed that tetracycline and caffeic acid phenethyl ester had the low binding energy (?7.32 and ?7.19 kcal/mol, respectively) and resembled the interaction pattern of GDCA (?6.88 kcal/mol) while penicillin (?6.25 kcal/mol) and ascorbic acid (?5.98 kcal/mol) interacted at a longer distance.

Conclusion

This study helps to delve into the molecular mechanisms involved in the recognition of substrates and potential inhibitors of LrBSH.

  相似文献   

14.
Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot is a perennial herb in the Zingiberaceae family with anticancer, anti-leptospiral, anti-inflammatory, antioxidant, antiulcer, and anti-herpes viral activities. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitory activity of B. rotunda extract has been recently found, the active compounds contributing to this activity are yet unknown. The main protease (Mpro) enzyme is one of the most well established therapeutic targets among coronaviruses which plays a vital role in the maturation and cleavage of polyproteins during viral replication. The current work aims to identify active phytochemical substances from B. rotunda extract that can inhibit the replication of SARS-CoV-2 by using a combined molecular docking and dynamic simulation approaches. The virtual screening experiment revealed that fifteen molecules out of twenty-three major active compounds in the plant extract have acceptable drug-like characteristics. Alpinetin, Pinocembrin, and Pinostrobin have binding energies of ?7.51 kcal/mol, ?7.21 kcal/mol, and ?7.18 kcal/mol, respectively, and can suppress Mpro activity. The stability of the simulated complexes of the lead compounds with the drug-receptor is demonstrated by 100-ns MD simulations. The binding free energies study utilizing molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) show that the compounds and Mpro enzyme have favourable thermodynamic interactions, which are majorly driven by van der Waals forces. Thus, the selected bioactive phytochemicals from B. rotunda might be used as anti-SARS-CoV-2 candidates that target the Mpro enzyme.  相似文献   

15.
Six hundred forty natural compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Of those, sargachromanol I (SCI) and G (SCG) isolated from the brown alga Sargassum siliquastrum, dihydroberberine (DB) isolated from Coptis chinensis, and macelignan (ML) isolated from Myristica fragrans, potently and effectively inhibited AChE with IC50 values of 0.79, 1.81, 1.18, and 4.16 µM, respectively. SCI, DB, and ML reversibly inhibited AChE and showed mixed, competitive, and noncompetitive inhibition, respectively, with Ki values of 0.63, 0.77, and 4.46 µM, respectively. Broussonin A most potently inhibited BChE (IC50 = 4.16 µM), followed by ML, SCG, and SCI (9.69, 10.79, and 13.69 µM, respectively). In dual-targeting experiments, ML effectively inhibited monoamine oxidase B with the greatest potency (IC50 = 7.42 µM). Molecular docking simulation suggested the binding affinity of SCI (−8.6 kcal/mol) with AChE was greater than those of SCG (−7.9 kcal/mol) and DB (−8.2 kcal/mol). Docking simulation indicated SCI interacts with AChE at Trp81, and that SCG interacts at Ser119. No hydrogen bond was predicted for the interaction between AChE and DB. This study suggests SCI, SCG, DB, and ML be viewed as new reversible AChE inhibitors and useful lead compounds for the development for the treatment of Alzheimer’s disease.  相似文献   

16.
There has been an explosion of structural information for pharmaceutical compounds bound to biological targets, but the conformations and dynamics of compounds free in solution are poorly characterized, if at all. Yet, knowledge of the unbound state is essential to understand the fundamentals of molecular recognition, including the much debated conformational intramolecular reorganization energy of a compound upon binding (ΔEReorg). Also, dependable observation of the unbound compounds is important for ligand-based drug discovery, e.g. with pharmacophore modelling. Here, these questions are addressed with long (⩾0.5 μs) state-of-the-art molecular dynamics (MD) simulations of 26 compounds (including 7 approved drugs) unbound in explicit solvent. These compounds were selected to be chemically diverse, with a range of flexibility, and good quality bioactive X-ray structures. The MD-simulated free compounds are compared to their bioactive structure and conformers generated with ad hoc sampling in vacuo or with implicit generalized Born (GB) aqueous solvation models. The GB conformational models clearly depart from those obtained in explicit solvent, and suffer from conformational collapse almost as severe as in vacuo. Thus, the global energy minima in vacuo or with GB are not suitable representations of the unbound state, which can instead be extensively sampled by MD simulations. Many, but not all, MD-simulated compounds displayed some structural similarity to their bioactive structure, supporting the notion of conformational pre-organization for binding. The ligand–protein complexes were also simulated in explicit solvent, to estimate ΔEReorg as an enthalpic difference ΔHReorg between the intramolecular energies in the bound and unbound states. This fresh approach yielded ΔHReorg values  6 kcal/mol for 18 out of 26 compounds. For three particularly polar compounds 15  ΔHReorg  20 kcal/mol, supporting the notion that ΔHReorg can be substantial. Those large ΔHReorg values correspond to a redistribution of electrostatic interactions upon binding. Overall, the study illustrates how MD simulations offer a promising avenue to characterize the unbound state of medicinal compounds.  相似文献   

17.
Acetylcholinesterase (AChE) and its mutation recently emerged as a significant research area, due to its resistance against organophosphate and carbamate insecticides. Residue G265, which is always a conservative residue, mutated to A265 is the most frequent mutant of AChE in Drosophila populations. However, only this mutation caused a ‘butterfly effect’ that gives high insecticidal resistance. Herein, the models of sensitive strain (Dm-S) and the resistance strain (Dm-R) were constructed, to give a total of 2000 ps molecular dynamics simulation and to reveal the insecticidal resistance mechanism, with implied, the active gorge of Dm-R was much less flexible than that of Dm-S. The “back door” channel was widened to accelerate the detoxication against insecticides by the conformation changing of W83 and I161. All the distances (S238-H480, S238-G150, S238-G151, Y71-M153) in Dm-R became smaller than those in Dm-S, which may deeply influence the binding between the insecticides and DmAChE.  相似文献   

18.
An inibition study of the β-carbonic anhydrase (CA, EC 4.2.1.1) DmBCA from the insect Drosophila melanogaster with sulfonamides and sulfamates is reported. Among the panel of 40 investigated compounds, the best DmBCA inhibitors were the sulfonylated benzenesulfonamides and ethoxzolamide, which showed inhibition constants in the range of 65.3–138 nM. Methazolamide and sulthiame were also effective inhibitors with KIs ranging between 237 and 249 nM, whereas most of the simple aromatic/heterocyclic sulfonamides showed inhibition constants in the range of 0.47–6.40 μM. Topiramate, zonisamide and saccharine did not inhibit DmBCA. As orthologs of this mitochondrial CA are found in many insect species involved in the spread of various diseases, inhibitors interfering with their activity may be of interest for developing insecticides with an alternative mechanism of action to the presently used agents, for which many insects developed extensive resistance.  相似文献   

19.
A novel series of chalcone derivatives (4a8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The log P values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE.  相似文献   

20.
Honokiol, a natural bioactive neolignan isolated from the bark and leaf of Magnolia officinalis and Magnolia obovata, exhibits many important biological properties. In continuation of our interest in discovery of the agrochemicals derived from the natural sources, thirty-seven new 8/8′-alkylthiol-benzoxazole and N-alkyl/sulfonyl-benzoxazolone derivatives of honokiol were prepared and their insecticidal activities were evaluated against the larvae of Mythimna separata Walker and Plutella xylostella Linnaeus. The results showed that eleven derivatives exhibited potent insecticidal activity against M. separata when compared with the positive control. Particularly, compound 5h displayed the most promising insecticidal activity against M. separata with the final mortality rate (FMR) of 58.6%. Meanwhile, compounds 7n (FMR = 65.3%), 7p (FMR = 61.5%), and 8c (FMR = 65.3%) demonstrated a greater insecticidal activity against P. xylostella than toosendanin, a well-known botanical insecticide. Additionally, the preliminary structure-activity relationships (SARs) were also discussed. This study indicates that these honokiol derivatives could be used as leads for the further derivation and development of the potential pesticide candidates for crop protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号