共查询到20条相似文献,搜索用时 15 毫秒
1.
De-Jun Liu Yue-Xia Xie Xiao-Xing Liu Yan-Miao Huo Min-Wei Yang Xue-Liang Fu 《Cell cycle (Georgetown, Tex.)》2017,16(17):1622-1629
Dickkopf-1(DKK-1), the downstream target of β-catenin/T-cell factor, participates in a negative feedback loop in the Wnt signaling and reported as an important biomarker in many tumors. In this study, we analyzed the expression of DKK-1 in pancreatic ductal adenocarcinoma (PDAC) patients at both mRNA and protein levels. We used real-time PCR to detect the expression of DKK-1 in 32 PDAC and paired adjacent non-tumor tissues, results suggested that the expression of DKK-1 was increased in PDAC tissues. We found the similar results in the analysis of 3 independent microarray data sets. Immunohistochemical staining of 311 pairs of PDAC tissues suggested that DKK-1 expression was significantly associated with T classification (P = 0.039) and lymph node metastasis (P = 0.035). Furthermore, Kaplan-Meier analysis for DKK-1 expression demonstrated that patients with higher DKK-1 level had shorter overall survival (OS) and relapse-free survival (RFS) time in Ren Ji cohort and online PDAC database at both mRNA and protein levels. Univariable and multivariable Cox regression analysis confirmed that DKK-1 as well as lymph node metastasis and histology were independent predictors of OS in patients with PDAC. This study demonstrated that DKK-1 may be a predictor for prognosis in PDAC patients. 相似文献
2.
Five key lncRNAs considered as prognostic targets for predicting pancreatic ductal adenocarcinoma 下载免费PDF全文
Jukun Song Qiuyan Xu Haodeng Zhang Xinhai Yin Chen Zhu Ke Zhao Jianguo Zhu 《Journal of cellular biochemistry》2018,119(6):4559-4569
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and the 5‐year survival rate was only 7.7%. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. Long non‐coding RNA (lncRNA) expression profiles as potential cancer prognostic biomarkers play critical roles in development of tumorigenesis and metastasis of cancer. However, lncRNA signatures in predicting the survival of a patient with PDAC remain unknown. In the current study, we try to identify potential lncRNA biomarkers and their prognostic values in PDAC. LncRNAs expression profiles and corresponding clinical information for 182 cases with PDAC were acquired from The Cancer Genome Atlas (TCGA). A total of 14 470 lncRNA were identified in the cohort, and 175 PDAC patients had clinical variables. We obtained 108 differential expressed lncRNA via R packages. Univariate and multivariate Cox proportional hazards regression, lasso regression was performed to screen the potential prognostic lncRNA. Five lncRNAs have been recognized to significantly correlate with OS. We established a linear prognostic model of five lncRNA (C9orf139, MIR600HG, RP5‐965G21.4, RP11‐436K8.1, and CTC‐327F10.4) and divided patients into high‐ and low‐risk group according to the prognostic index. The five lncRNAs played independent prognostic biomarkers of OS of PDAC patients and the AUC of the ROC curve for the five lncRNAs signatures prediction 5‐year survival was 0.742. In addition, targeted genes of MIR600HG, C9orf139, and CTC‐327F10.4 were explored and functional enrichment was also conducted. These results suggested that this five‐lncRNAs signature could act as potential prognostic biomarkers in the prediction of PDAC patient's survival. 相似文献
3.
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC. 相似文献
4.
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide. However, there remain many unmet clinical needs, from diagnosis to treatment strategies. The inherent complexity of the molecular characteristics of PDAC has made it difficult to meet these challenges, rendering proteomic profiling of PDAC a critical area of research.
Area covered: In this review, we present recent advances in mass spectrometry (MS) and its current application in proteomic studies on PDAC. In addition, we discuss future directions for research that can efficiently incorporate current MS-based technologies that address key issues of PDAC proteomics.
Expert commentary: Compared with other cancer studies, little progress has been made in PDAC proteomics, perhaps attributed to the difficulty in performing in-depth and large-scale clinical studies on PDAC. However, recent advances in mass spectrometry can advance PDAC proteomics past the fundamental research stage. 相似文献
5.
《FEBS letters》2014,588(23):4375-4381
Pancreatic ductal adenocarcinoma (PDAC) ranks fourth on the list of cancer-related causes of death. Deregulation or dysfunction of miRNAs contribute to cancer development. In this study, we found that low miR-545 level and high RIG-I protein in PDAC tissues were both correlated with low survival rate. MiR-545 up-regulation inhibited PDAC cell lines growth and vice versa. 3′UTR of RIG-I was targeted by miR-545. Thus we concluded that low miR-545 levels in PDAC promote tumor cells growth, and this is associated with reduced survival in PDAC patients. MiR-545 exerts its effects by directly targeting RIG-1. 相似文献
6.
Pancreatic ductal adenocarcinoma (PDAC) is a common malignancy with a very low 5-year survival rate. Currently, there are no valid markers for early detection and targets for therapy. Here, we used 2-DE to analyze the protein profiles of eight PDAC specimens and paired adjacent nontumor tissues. MS was used to identify 15 protein spots that were found to be overexpressed in PDAC tissues versus adjacent controls. One of them was identified as phosphoglycerate kinase (PGK) 1, a secretable glycolytic enzyme known to participate in angiogenesis. Immunohistochemical analysis of 63 PDAC specimens revealed moderate to strong expression of PGK1 in >70% of the tumors. Further Western blotting analysis of cells from tumor and adjacent nontumor tissues obtained by laser capture microdissection confirmed the enhanced expression of PGK1 in tumor cells. Furthermore, the serum levels of PGK1 were significantly higher in PDAC patients (n = 21) than in the control group (n = 25) (p < 0.005), as determined by ELISA. These observations indicate that protein profile analysis using a combination of 2-DE and MS provides an effective strategy for identifying biomarkers that may have diagnostic potential for PDAC, and identify PGK1 as a potential biomarker and/or therapeutic target for PDAC. 相似文献
7.
Changxing Qi Weixi Gao Danyingzi Guan Jianping Wang Mengting Liu Chunmei Chen Hucheng Zhu Yuan Zhou Yongji Lai Zhengxi Hu Qun Zhou Yonghui Zhang 《Bioorganic & medicinal chemistry》2018,26(22):5903-5910
Chemical study on the extract of a marine-derived fungus Aspergillus terreus yielded twelve butenolide derivatives, including three new compounds, namely asperlides A–C (1–3) and nine known butenolides (4–12). The structures of 1–3 were confirmed by comprehensive spectroscopic analysis, including HRESIMS, NMR spectroscopy, and calculated electronic circular dichroism (ECD). The cytotoxicity of the compounds was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer cells. The results showed that (+)-3′,3′-di-(dimethylallyl)-butyrolactone II (4) and versicolactone B (6) exhibited the most potent cytotoxin of PANC-1 cell line, with the IC50 values of 5.3 and 9.4?μM, respectively. Morphological features of apoptosis were observed in 4 and 6-treated PANC-1 cells, including apoptotic body formation, membrane blebbing, cell shrinkage and nuclear condensation. Cell cycle analysis with propidium iodide staining exhibited that 4 inhibits proliferation of PANC-1 cells via the induction of G2/M and S phase arrest, while 6 could retard the PANC-1 cells via the induction of S phase arrest. Flow cytometric analysis suggested that treatment with 4 and 6 significantly induced PANC-1 cells apoptosis. These findings indicated that 4 and 6 might serve as a starting point for the development of an anticancer drug for the treatment of pancreatic ductal adenocarcinoma. 相似文献
8.
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients. 相似文献
9.
Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy
Maria Mortoglou Zoey Kathleen Tabin E. Damla Arisan Hemant M Kocher Pinar Uysal-Onganer 《Translational oncology》2021,14(7)
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19–9 (CA 19–9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC. 相似文献
10.
Xiu-Ping Zhang Qinjunjie Chen Qu Liu Yang Wang Fei Wang Zhi-Ming Zhao Guo-Dong Zhao Wan Yee Lau Yu-Zhen Gao Rong Liu 《Journal of cellular and molecular medicine》2021,25(12):5615-5627
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with aggressive biological behaviour. Its rapid proliferation and tumour growth require reprogramming of glucose metabolism or the Warburg effect. However, the association between glycolysis-related genes with clinical features and prognosis of PDAC is still unknown. Here, we used the meta-analysis to correlate the hazard ratios (HR) of 106 glycolysis genes from MSigDB by the cox proportional hazards regression analysis in 6 clinical data sets of PDAC patients to form a training cohort, and a single group of PDAC patients from the TCGA, ICGC, Arrayexpress and GEO databases to form the validation cohort. Then, a glycolysis-related prognosis (GRP) score based on 29 glycolysis prognostic genes was established in 757 PDAC patients from the training composite cohort and validated in 267 ICGC-CA validation cohort (all P < .05). In addition, including PADC, the prognostic value was also confirmed in other 7 out of 30 pan-cancer cohorts. The GRP score was significantly related to specific metabolism pathways, immune genes and immune cells in the patients with PADC (all P < .05). Finally, by combining with immune cells, the GRP score also well-predicted the chemosensitivity of patients with PADC in the TCGA cohort (AUC = 0.709). In conclusion, this study developed a GRP score for patients with PDAC in predicting prognosis and chemosensitivity for PDAC. 相似文献
11.
Tetsuo Kobayashi Kosuke Nakazono Mio Tokuda Yu Mashima Brian David Dynlacht Hiroshi Itoh 《EMBO reports》2017,18(2):334-343
Loss of primary cilia is frequently observed in tumor cells, including pancreatic ductal adenocarcinoma (PDAC) cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction and the inability to exit the cell cycle. However, the molecular mechanisms that explain how PDAC cells lose primary cilia are still ambiguous. In this study, we found that inhibition or silencing of histone deacetylase 2 (HDAC2) restores primary cilia formation in PDAC cells. Inactivation of HDAC2 results in decreased Aurora A expression, which promotes disassembly of primary cilia. We further showed that HDAC2 controls ciliogenesis independently of Kras, which facilitates Aurora A expression. These studies suggest that HDAC2 is a novel regulator of primary cilium formation in PDAC cells. 相似文献
12.
Justin Anglin Reza Beheshti Zavareh Philipp N. Sander Daniel Haldar Edouard Mullarky Lewis C. Cantley Alec C. Kimmelman Costas A. Lyssiotis Luke L. Lairson 《Bioorganic & medicinal chemistry letters》2018,28(16):2675-2678
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is extremely refractory to the therapeutic approaches that have been evaluated to date. Recently, it has been demonstrated that PDAC tumors are dependent upon a metabolic pathway involving aspartate aminotransferase 1, also known as glutamate-oxaloacetate transaminase 1 (GOT1), for the maintenance of redox homeostasis and sustained proliferation. As such, small molecule inhibitors targeting this metabolic pathway may provide a novel therapeutic approach for the treatment of this devastating disease. To this end, from a high throughput screen of ~800,000 molecules, 4-(1H-indol-4-yl)-N-phenylpiperazine-1-carboxamide was identified as an inhibitor of GOT1. Mouse pharmacokinetic studies revealed that potency, rather than inherent metabolic instability, would limit immediate cell- and rodent xenograft-based experiments aimed at validating this potential cancer metabolism-related target. Medicinal chemistry-based optimization resulted in the identification of multiple derivatives with >10-fold improvements in potency, as well as the identification of a tryptamine-based series of GOT1 inhibitors. 相似文献
13.
14.
《Cell》2021,184(19):5031-5052.e26
15.
Karuna Mittal Angela Ogden Michelle D Reid Padmashree CG Rida Sooryanarayana Varambally Ritu Aneja 《Cell cycle (Georgetown, Tex.)》2015,14(17):2798-2809
Centrosome amplification (CA), the presence of centrosomes that are abnormally numerous or enlarged, is a well-established driver of tumor initiation and progression associated with poor prognosis across a diversity of malignancies. Pancreatic ductal adenocarcinoma (PDAC) carries one of the most dismal prognoses of all cancer types. A majority of these tumors are characterized by numerical and structural centrosomal aberrations, but it is unknown how CA contributes to the disease and patient outcomes. In this study, we sought to determine whether CA was associated with worse clinical outcomes, poor prognostic indicators, markers of epithelial-mesenchymal transition (EMT), and ethnicity in PDAC. We also evaluated whether CA could precipitate more aggressive phenotypes in a panel of cultured PDAC cell lines. Using publicly available microarray data, we found that increased expression of genes whose dysregulation promotes CA was associated with worse overall survival and increased EMT marker expression in PDAC. Quantitative analysis of centrosomal profiles in PDAC cell lines and tissue sections uncovered varying levels of CA, and the expression of CA markers was associated with the expression of EMT markers. We induced CA in PDAC cells and found that CA empowered them with enhanced invasive and migratory capabilities. In addition, we discovered that PDACs from African American (AA) patients exhibited a greater extent of both numerical and structural CA than PDACs from European American (EA) patients. Taken together, these findings suggest that CA may fuel a more aggressive disease course in PDAC patients. 相似文献
16.
Pancreatic ductal adenocarcinoma (PDAC), a common malignancy originated from the digestive system worldwide, has a poor clinical outcome. SPOCK1 is a widely investigated member of the Ca2+-binding proteoglycan family and functions as an essential driver in several cancers. However, the complex regulatory role of SPOCK1 in PDAC is unclear. Bioinformatics analysis predicted an interrelationship between increased SPOCK1 expression and the clinical characteristics of patients with PDAC. The SPOCK1 expression levels in fresh tissue samples were confirmed, and SPOCK1 expression was then knocked down by lentivirus-mediated short hairpin RNA. Cell proliferation, metastasis, and apoptosis were detected through Cell Counting Kit-8, colony formation assays, invasion and migration assays, flow cytometric analysis, quantitative real-time polymerase chain reaction, and Western blot experiment. On the basis of the Cancer Genome Atlas database, we found a significantly higher level of SPOCK1 in PDAC than in adjacent nontumor tissues. Patients with PDAC with high SPOCK1 expression exhibited shorter overall survival time, as well as disease-free survival time. The knockdown of SPOCK1 significantly decreased the proliferation and metastasis of PCNA-1 and MIA PaCa-2 cells. Moreover, the knockdown of SPOCK1 led to cell cycle arrest in G0/G1 phase and increased the proportion of apoptotic PDAC cells by regulating members of the caspase and Bcl-2 families. Our data proved that SPOCK1 is a critical regulator of tumor proliferation and metastasis in PDAC cells. Therefore, SPOCK1 might be a potential prognostic and therapeutic target molecule in PDAC. 相似文献
17.
Cristiana Pistol Tanase Simona Dima Mihaela Mihai Elena Raducan Mihnea Ioan Nicolescu Lucian Albulescu Bogdan Voiculescu Traian Dumitrascu Linda Maria Cruceru Mircea Leabu Irinel Popescu Mihail Eugen Hinescu 《Journal of molecular histology》2009,40(1):23-29
The assessment of caveolin-1 (Cav-1) as a marker of tumor aggressiveness in pancreatic ductal adenocarcinoma (PDAC). In this
study, we examined the expression of Cav-1 in 34 human PDAC tissue samples and the associated peritumoral tissues by immunohistochemistry
and western blot. Additionally, we correlated Cav-1 expression with other tissue (Ki-67, p53) and serum (CA 19-9) tumor markers.
In the tumor-derived tissue, both tumor cells and blood vessels expressed Cav-1. In contrast, in peritumoral tissue, Cav-1
expression was confined mainly to blood vessels and was only occasionally expressed in ductal or parenchymal cells. Western
blot analysis confirmed the overexpression of Cav-1 in pancreatic tumors compared with peritumoral tissue. Cav-1 expression
in tumor tissues was correlated with both the Ki-67 LI (r = 0.95, P < 0.0001) and p53 expression (χ2 = 9.91, P < 0.005). Overexpression of Cav-1 was associated with tumor size, grade and stage and Cav-1 expression in tumors was correlated
with an increased serum level of CA 19-9 (r = 0.795, P < 0.001). Based on the results of this study, the inclusion of Cav-1 in a putative panel of biomarkers predicting pancreatic
cancer aggressiveness is warranted. 相似文献
18.
19.
Proteomics study of pancreatic cancer using bodily fluids emphasizes biomarker discovery and clinical application, presenting unique prospect and challenges. Depending on the physiological nature of the bodily fluid and its proximity to pancreatic cancer, the proteomes of bodily fluids, such as pancreatic juice, pancreatic cyst fluid, blood, bile, and urine, can be substantially different in terms of protein constitution and the dynamic range of protein concentration. Thus, a comprehensive discovery and specific detection of cancer‐associated proteins within these varied fluids is a complex task, requiring rigorous experiment design and a concerted approach. While major challenges still remain, fluid proteomics studies in pancreatic cancer to date have provided a wealth of information in revealing proteome alterations associated with pancreatic cancer in various bodily fluids. 相似文献