首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

2.
Porphyromonas gingivalis is a major bacterial species implicated in chornic periodontitis, a disease characterized by inflammatory destruction of the tooth supporting tissues. Its main virulence factors are lipopolysaccharide (LPS) and gingipains, a group of cysteine proteinases. Interleukin (IL)-18 is a potent pro-inflammatory cytokine with structural similarities to IL-1β. This study aimed to investigate if P .gingivalis regulates IL-1β and IL-18 in monocytic cells. Monomac-6 cells were challenged with P. gingivalis culture supernatants. Quantitative real-time PCR and ELISA were used to investigate IL-1β and IL-18 mRNA expression and protein secretion, respectively. P. gingivalis enhanced IL-1β and IL-18 mRNA expression, the former being induced earlier, but transiently. IL-18 up-regulation was not affected by P. gingivalis heat-inactivation or chemical inhibition of its gingipains, whereas both treatments resulted in 50% reduction of IL-1β expression. Purified P. gingivalis LPS enhanced both IL-1β and IL-18 expression. However, only IL-1β, but not IL-18, secretion was detected, and was up-regulated by P. gingivalis. In conclusion, although IL-1β and IL-18 belong to the same cytokine family, their gene expression and secretion are differentially regulated in human monocytic cells in response to P. gingivalis. Therefore, cytokines of the IL-1 family may participate via different pathways in the complex pathogenesis of periodontitis.  相似文献   

3.
Hyperglycemia is the major cause of diabetic angiopathy. Sarpogrelate hydrochloride is an antiplatelet drug, and expected to be useful in the treatment of chronic arterial occlusive diseases. The aim of our study was to evaluate the possible effects of sarpogrelate hydrochloride on adhesion molecule expression and its underlying mechanism in the prevention and treatment of cardiovascular disorders. Intercellular adhesion molecule-1 (ICAM-1) expression and superoxide dismutase (SOD) activity were determined after endothelial cells were exposed to high glucose in the absence and presence of sarpogrelate hydrochloride. Coincubation of endothelial cells with high glucose for 24 h resulted in a significant increase of monocyte–endothelial cell adhesion and the expression of ICAM-1 (P < 0.01). These effects were abolished by sarpogrelate hydrochloride and sarpogrelate hydrochloride significantly increased SOD activities (40 ± 8 vs. 47 ± 7, n = 8, P < 0.01). The low dose sarpogrelate group (0.1 μM) had significantly higher monocyte–endothelial cell adhesion and the expression of ICAM-1 than medium dose sarpogrelate group (1.0 μM) and high dose sarpogrelate group (10.0 μM) (P < 0.05 for comparison among three groups and P < 0.01 for difference between low and high dose sarpogrelate groups). These findings suggested that sarpogrelate hydrochloride was able to protect vascular endothelium from dysfunction induced by high glucose.  相似文献   

4.
Adrenomedullin (ADM) and hypoxia-inducible factor-1α (HIF-1α) are important pro-proliferation genes in response to hypoxic stress. Although it was reported that ADM is a target gene for HIF-1, recent studies also showed that ADM regulates HIF-1 expression and its activity; however, the mechanism of action remains unknown. Two stable human endothelial cell lines with HIF-1α knockdown by hy926-siHIF-1α or HMEC-siHIF-1α were established. mRNA and protein expression of ADM and HIF-1α in EA.hy926 and HMEC1 cells were examined under hypoxic stress. Upon ADM treatment, cell proliferation was investigated and the expression profiles of HIF-1α and its target genes (VEGF, PFKP, PGK1, and AK1) were examined. Furthermore, the proline hydroxylase (PHD) mRNA level and its activity were investigated. We observed that mRNA and protein expression of ADM in hypoxia are earlier events than HIF-1α in EA.hy926 and HMEC1 cells. ADM-promoted cell proliferation of endothelial cells, which was HIF-1α dependent. We also found that ADM up-regulated the mRNA and protein expressions of HIF-1α- and HIF-1-targeted genes, and ADM up-regulated the protein expressions of HIF-1α through down-regulation of PHD mRNA expression and PHD activity.  相似文献   

5.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

6.

Background  

Visfatin, a adipocytokine with insulin-mimetic effect, plays a role in endothelial angiogenesis. Hyperbaric oxygen (HBO) has been used in medical practice. However, the molecular mechanism of beneficial effects of HBO is poorly understood. We sought to investigate the cellular and molecular mechanisms of regulation of visfatin by HBO in human coronary arterial endothelial cells (CAECs).  相似文献   

7.
Ras guanyl nucleotide releasing proteins (RasGRPs) are guanine nucleotide exchange factors that activate Ras and Rap. We recently reported that xrasgrp2, which is a homolog of the human rasgrp2, plays a role in vasculogenesis and/or angiogenesis during early development of Xenopus embryos. However, the function of RasGRP2 in human vascular endothelium remains unknown. Therefore we aimed to analyze the function of human RasGRP2 in vascular endothelial cells. RasGRP2 overexpression did not increase Ras activation. However, it slightly increased Ras expression and increased proliferation in ECV304 cells. Furthermore, RasGRP2 overexpression increased Rap1 activation and cell–matrix adhesion in ECV304 cells. These data demonstrate that RasGRP2 increases cell viability and cell–matrix adhesion through increased Ras expression and Rap1 activation, respectively, in endothelial cells.  相似文献   

8.
Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis-related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.  相似文献   

9.
Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer.  相似文献   

10.
Prostate cancer (CaP) is the second most common cancer in men worldwide in 2012, and radiation therapy is one of the most common definitive treatment options for localized CaP. However, radioresistance is a major challenge for the current radiotherapy, accumulating evidences suggest microRNAs (miRNAs), as an important regulator in cellular ionizing radiation (IR) responses, are closely correlated with radiosensitivity in many cancers. Here, we identified microRNA-16-5p(miR-16-5p) is significantly upregulated in CaP LNCaP cells following IR and can enhance radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway. To identify the expression profile of miRNAs in CaP cells exposed to IR, we performed human miRNA probe hybridization chip analysis and miR-16-5p was found to be significantly overexpressed in all treatment groups that irradiated with different doses of X-rays and heavy ions (12C6+). Furthermore, overexpression of miR-16-5p suppressed cell proliferation, reduced cell viability, and induced cell cycle arrest at G0/G1 phase, resulting in enhanced radiosensitivity in LNCaP cells. Additionally, miR-16-5p specifically targeted the Cyclin D1/E1–3′-UTR in LNCaP cells and affected the expression of Cyclin D1/E1 in both mRNA and protein levels. Taken together, miR-16-5p enhanced radiosensitivity of CaP cells, the mechanism may be through modulating Cyclin D1/Cyclin E1/pRb/E2F1 pathway to cause cell cycle arrest at G0/G1 phase. These findings provided new insight into the correlation between miR-16-5p, cell cycle arrest, and radiosensitivity in CaP, revealed a previously unrecognized function of miR-16-5p–Cyclin D1/E1–pRb–E2F1 regulation in response to IR and may offer an alternative therapy to improve the efficiency of conventional radiotherapy.  相似文献   

11.
Excessive apoptosis of disc cells is believed to play an important role in intervertebral disc (IVD) degeneration. It has been shown that interleukin-1β (IL-1β) is involved in the failure of disc matrix by suppressing the synthesis of matrix components and stimulating the expression of matrix metalloproteinases. However, whether IL-1β induces disc cell apoptosis is still unclear. The objective of this study was to investigate the effect of IL-1β on the apoptosis of rat annular cells cultured with or without serum supplement. First-passage rat annular cells were cultured with 0% or 10% fetal bovine serum (FBS) supplement and stimulated with 0, 10, 20 or 50 ng/ml IL-1β for 12, 24 or 48 h. Apoptotic incidences were quantified by flow cytometry, morphologic changes in apoptotic cells were visualized by Hoechst 33258 staining and phase-contrast microscopy, and caspase-3 activity was also determined. When rat annular cells were cultured with 10% FBS supplement, no significant changes in apoptotic incidences, apoptotic morphology and caspase-3 activity were observed even when cells were stimulated with 50 ng/ml IL-1β for 48 h. In contrast, serum deprivation for 24 h led to an increase in apoptotic incidences, the number of apoptotic nuclei and caspase-3 activity, and IL-1β significantly increased the effects of serum deprivation in a dose-dependent manner. Our results indicate that IL-1β alone is not a sufficient stimulus to induce disc cell apoptosis and that in order to suppress disc cell apoptosis, improving the nutrient supply to the disc may be more effective than antagonizing the adverse effects of IL-1β.  相似文献   

12.
Adiponectin (Ad) is an insulin-sensitizing adipocytokine with anti-inflammatory and vasoprotective properties. Cleavage of native full-length Ad (fAd) by elastases from activated monocytes generates globular Ad (gAd). Increased gAd levels are observed in the proximity of atherosclerotic lesions, but the physiological meaning of this proteolytic Ad fragment in the cardiovascular system is controversial. We compared molecular and biological properties of fAd and gAd in human aortic endothelial cells (HAEC). In control HAEC, both fAd and gAd acutely stimulated nitric oxide (NO) production by AMPK-dependent pathways. With respect to fAd, gAd more efficiently increased activation of NF-κB signaling pathways, resulting in cyclooxygenase-2 (COX-2) overexpression and COX-2-dependent prostacyclin 2 (PGI(2)) release. In contrast with fAd, gAd also increased p38 MAPK phosphorylation and VCAM-1 expression, ultimately enhancing adhesion of monocytes to endothelial cells. In HAEC lacking AdipoR1 (by siRNA), both activation of NF-κB as well as COX-2 overexpression by gAd were abrogated. Conversely, gAd-mediated p38MAPK activation and VCAM-1 expression were unaffected, and monocyte adhesion was greatly enhanced. In HAEC lacking COX-2 (by siRNA), reduced levels of PGI(2) further increased gAd-dependent monocyte adhesion. Our findings suggest that biological activities of fAd and gAd in endothelium do not completely overlap, with gAd possessing both AdipoR1-dependent ability to stimulate COX-2 expression and AdipoR1-independent effects related to expression of VCAM-1 and adhesion of monocytes to endothelium.  相似文献   

13.
Leucocyte adhesion to the vascular endothelium is a critical event in the early inflammatory response to infection and injury.This process is primarily regulate...  相似文献   

14.
15.
Active suppression of inflammation is a strategy used by many viral and bacterial pathogens, including virulent strains of the bacterium Francisella tularensis, to enable colonization and infection in susceptible hosts. In this study, we demonstrated that virulent F. tularensis strain SchuS4 selectively inhibits production of IL-12p40 in primary human cells via induction of IFN-β. In contrast to the attenuated live vaccine strain, infection of human dendritic cells with virulent SchuS4 failed to induce production of many cytokines associated with inflammation (e.g., TNF-α and IL-12p40). Furthermore, SchuS4 actively suppressed secretion of these cytokines. Assessment of changes in the expression of host genes associated with suppression of inflammatory responses revealed that SchuS4, but not live vaccine strain, induced IFN-β following infection of human dendritic cells. Phagocytosis of SchuS4 and endosomal acidification were required for induction of IFN-β. Further, using a defined mutant of SchuS4, we demonstrated that the presence of bacteria in the cytosol was required, but not sufficient, for induction of IFN-β. Surprisingly, unlike previous reports, induction of IFN-β by F. tularensis was not required for activation of the inflammasome, was not associated with exacerbation of inflammatory responses, and did not control SchuS4 replication when added exogenously. Rather, IFN-β selectively suppressed the ability of SchuS4-infected dendritic cells to produce IL-12p40. Together, these data demonstrated a novel mechanism by which virulent bacteria, in contrast to attenuated strains, modulate human cells to cause disease.  相似文献   

16.

Aims

ICAM-1-dependent leukocyte recruitment in vivo is inhibited by the vitamin E isoform d-α-tocopherol and elevated by d-γ-tocopherol. ICAM-1 is reported to activate endothelial cell signals including protein kinase C (PKC), but the PKC isoform and the mechanism for ICAM-1 activation of PKC are not known. It is also not known whether ICAM-1 signaling in endothelial cells is regulated by tocopherol isoforms. We hypothesized that d-α-tocopherol and d-γ-tocopherol differentially regulate ICAM-1 activation of endothelial cell PKC.

Results

ICAM-1 crosslinking activated the PKC isoform PKCα but not PKCβ in TNFα-pretreated human microvascular endothelial cells. ICAM-1 activation of PKCα was blocked by the PLC inhibitor U73122, ERK1/2 inhibitor PD98059, and xanthine oxidase inhibitor allopurinol. ERK1/2 activation was blocked by inhibition of XO and PLC but not by inhibition of PKCα, indicating that ERK1/2 is downstream of XO and upstream of PKCα during ICAM-1 signaling. During ICAM-1 activation of PKCα, the XO-generated ROS did not oxidize PKCα. Interestingly, d-α-tocopherol inhibited ICAM-1 activation of PKCα but not the upstream signal ERK1/2. The d-α-tocopherol inhibition of PKCα was ablated by the addition of d-γ-tocopherol.

Conclusions

Crosslinking ICAM-1 stimulated XO/ROS which activated ERK1/2 that then activated PKCα. ICAM-1 activation of PKCα was inhibited by d-α-tocopherol and this inhibition was ablated by the addition of d-γ-tocopherol. These tocopherols regulated ICAM-1 activation of PKCα without altering the upstream signal ERK1/2. Thus, we identified a mechanism for ICAM-1 activation of PKC and determined that d-α-tocopherol and d-γ-tocopherol have opposing regulatory functions for ICAM-1-activated PKCα in endothelial cells.  相似文献   

17.
Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.  相似文献   

18.
Enterotoxigenic Bacteroides fragilis (ETBF) produces a ~ 20-kDa heat-labile enterotoxin (BFT) that plays an essential role in mucosal inflammation. Although a variety of inflammatory cells is found at ETBF-infected sites, little is known about leukocyte adhesion in response to BFT stimulation. We investigated whether BFT affected the expression of ICAM-1 and monocytic adhesion to endothelial cells (ECs). Stimulation of HUVECs and rat aortic ECs with BFT resulted in the induction of ICAM-1 expression. Upregulation of ICAM-1 was dependent on the activation of IκB kinase (IKK) and NF-κB signaling. In contrast, suppression of AP-1 did not affect ICAM-1 expression in BFT-stimulated cells. Suppression of NF-κB activity in HUVECs significantly reduced monocytic adhesion, indicating that ICAM-1 expression is indispensable for BFT-induced adhesion of monocytes to the endothelium. Inhibition of JNK resulted in a significant attenuation of BFT-induced ICAM-1 expression in ECs. Moreover, inhibition of aldose reductase significantly reduced JNK-dependent IKK/NF-κB activation, ICAM-1 expression, and adhesion of monocytes to HUVECs. These results suggest that a signaling pathway involving aldose reductase, JNK, IKK, and NF-κB is required for ICAM-1 induction in ECs exposed to BFT, and may be involved in the leukocyte-adhesion cascade following infection with ETBF.  相似文献   

19.
Guo F  Zhou Z  Dou Y  Tang J  Gao C  Huan J 《Cytokine》2012,57(3):417-428
The purpose of study is to investigate the effects of GEF-H1/RhoA pathway in regulating intercellular adhesion molecule-1 (ICAM-1) expression in lipopolysaccharide (LPS)-activated endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to LPS induced GEF-H1 and ICAM-1 expression in dose- and time-dependent up-regulating manners. Pretreatment with Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activity, reduced LPS-related phosphorylation of p65 at Ser 536 in a dose-dependent manner. Inhibition of TLR4 expression significantly blocked LPS-induced RhoA activity, NF-κB transactivation, GEF-H1 and ICAM-1 expression. Coimmunoprecipitation assay indicated that LPS-activated TLR4 and GEF-H1 formed a signalling complex, suggesting that LPS, acting through TLR4, stimulates GEF-H1 expression and RhoA activity, and thereby induces NF-κB transactivation and ICAM-1 gene expression. However, GEF-H1/RhoA regulates LPS-induced NF-κB transactivation and ICAM-1 expression in a MyD88-independent pathway because inhibition of MyD88 expression could not block LPS-induced RhoA activity. Furthermore, pretreatment with Y-27632, an inhibitor of ROCK, significantly reduced LPS-induced p38, ERK1/2 and p65 phosphorylation, indicating that ROCK acts as an upstream effector of p38 and ERK1/2 to promote LPS-induced NF-κB transactivation and ICAM-1 expression. What is more, the p38 inhibitor (SB203580) but not ERK1/2 inhibitor (PD98059) blocked LPS-induce NF-κB transactivation and ICAM-1 expression, which demonstrates that RhoA mediates LPS-induced NF-κB transactivation and ICAM-1 expression dominantly through p38 but not ERK1/2 activation. In summary, our data suggest that LPS-induced ICAM-1 synthesis in HUVECs is regulated by GEF-H1/RhoA-dependent signaling pathway via activation of p38 and NF-κB.  相似文献   

20.
Periostin (POSTN) is an extracellular matrix protein expressed predominantly in periodontal ligament (PDL) cells. The aim of this study was to investigate the effects of POSTN on human PDL cell apoptosis under hypoxic conditions. The percentage of apoptotic PDL cells under hypoxia was increased significantly when the endogenous POSTN gene was silenced using siRNA, but decreased when cells were treated with recombinant human POSTN (rhPOSTN), or when mouse Postn was overexpressed in vitro. Silencing POSTN during hypoxia decreased the expression of HIF prolyl-hydroxylase 2 (PHD2), but increased HIF-1α protein level. Conversely, treating hypoxic cells with rhPOSTN or overexpressing Postn increased PHD2 expression but decreased HIF-1α levels. The addition of rhPOSTN in the absence of a TGF-β receptor inhibitor (SB525334) significantly decreased hypoxia-induced apoptosis, while the effects of rhPOSTN were abolished when cells were co-treated with SB525334. Consistent with this, the phosphorylation of SMAD2 was increased in hypoxic PDL cells by the knockdown of POSTN, but decreased by treatment with rhPOSTN. Under normoxia, the PHD2 expression, HIF-1α level, and apoptosis were unaffected by POSTN siRNA, rhPOSTN, or Postn overexpression. These findings suggest that, under hypoxic conditions, POSTN regulates PHD2 expression and HIF-1α levels by modulating TGF-β1 signaling, leading to decreased apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号