首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When annealed with synthetic polynucleotides and treated with ribonuclease under appropriate conditions, poly(U) forms the ribonuclease-resistant complexes poly(rA) · poly(U) (1:1), poly(dA) · 2poly(U) (1:2) and poly · (dA)poly(dT) · poly(U) (1:1:1). This forms the basis of a quantitative assay of poly(rA), poly(dA) and poly(dA) · poly(dT) sequences in unlabelled nucleic acids. Using this assay, duck haemoglobin messenger RNA is shown to contain a poly(rA) sequence approximately 100 nucleotides long.Eukaryotic DNAs contain small amounts of sequences that react with poly(U). In the case of duck DNA, these sequences are considerably shorter than the mRNA-associated sequences and are interspersed widely with other sequences. It is concluded that if duck DNA does contain poly(dA) sequences corresponding to mRNA-associated poly(rA) sequences, there are fewer than 8000 of these per haploid genome.  相似文献   

2.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln K(a) versus [Na(+)] for poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (DeltaCp(o)) of berberine binding to poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), Clostridium perfringens and calf thymus DNA were -98, -140, -120 and -110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

3.
4.
The level of deoxyadenylate (da) regions in human DNA was estimated from formation of poly(U)-poly(da) triplexes on nitrocellulose filters that were RNAase resistant. The (dA) rich sequences were determined following mild ribonuclease treatment of the poly(U)-DNA hybrids (5 mug/ml at 25 degreesC for 30 min), where as exhaustive ribonuclease treatment (5 mug/ml at 25 degrees C for 6 hr) estimated the more (dA) pure sequences. The level of (dA) rich regions was 0.39% of the DNA and for the more (dA) pure regions it was 0.07%. The (dA) regions were widely distributed throughout human DNA regardless of base composition or sequence repetition. However, a concentration of (dA) regions into main band CsC1 gradient fractions of DNA and into repeated DNA was observed.  相似文献   

5.
We have studied the interaction of poly(rA) and poly(rU) with natural DNAs containing (dA.dT)n sequences. The results indicate that hybridization of poly(rA) to denatured DNA can be used to estimate the size and frequency of large (dA.dT)n tracts, whereas hybridization with poly(rU) does not give reliable information on these points. In 6.6 M CsCl, poly(rU) can form stable complexes with denatured DNA containing short (dA)n tracts (n less than or equal to 6), whereas binding of poly(rA) to denatured DNA under these conditions requires much larger (dT)n tracts (estimated n greater than 13). Moreover, binding of poly(rA) requires pre-hybridization in low salt, because free poly(rA) precipitates in 6.6 M CsCl.  相似文献   

6.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA–dT).poly(dA–dT) and poly(dG–dC).poly(dG–dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln Ka versus [Na+] for poly(dA).poly(dT) and poly(dA–dT).poly(dA–dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (ΔCpo) of berberine binding to poly(dA).poly(dT), poly(dA–dT).poly(dA–dT), Clostridium perfringens and calf thymus DNA were − 98, − 140, − 120 and − 110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

7.
The circular dichroic (CD) spectra of natural DNAs (from Cl. perfringens, T2 phage, calf thymus, E. coli, and M. lysodeikticus) as well as duplexes of synthetic DNAs (poly(dA) X poly(dT), poly(dA-dT), and poly(dG-dC] were measured in water-ethanol mixtures with 0.3 mM NaCl. A conformational change from the B to the A form was observed for the natural DNAs on adding ethanol. The ethanol concentration that induces the transition and the extent of the change in the CD spectrum are different for the five natural DNAs depending on their GC contents. The higher the GC content is, the more easily the transition to the A form takes place. The results indicate that the GC content of a DNA is an important factor for induction of the B-A transition. The results for the synthetic DNAs show that their properties cannot be inferred by simple extrapolation of those of natural DNAs. Coexisting ions and the molecular weight of a DNA were also found to affect the induction of the B-A transition.  相似文献   

8.
In continuing search for exploitable biochemical differences between cancer and normal cells at the level of DNA replication, leukemic and "normal" hematopoietic cells from four different, established human cell lines were grown in culture flasks, and both the DNA and the DNA polymerase alpha were isolated in each case from the harvested (5-10 g wet weight) cell pellets. The four selected cell lines included a "normal" lymphoblastoid B-cell line (RPMI-1788), a pre-B cell (NALM-6) and a T-cell (MOLT-4) acute lymphoblastic leukemias, and a promyelocytic leukemia (HL-60). The DNA polymerase alpha enzyme of the two B-cell lines (both the leukemic and the "normal") showed the usual sensitivity toward inhibition by aphidicolin, while those from the two other leukemic cell lines were remarkably resistant to the antibiotic. Partially thiolated polycytidylic acid (MPC) strongly inhibited only the DNA polymerase alpha of the "normal" cell line, whereas the corresponding enzymes of all three leukemic cell lines were relatively insensitive to MPC. In contrast, the partially thiolated DNAs derived from the leukemic cell lines more strongly inhibited the DNA polymerase alphas of the leukemic cell lines than that of the "normal" cell line. These results indicate the existence of some structural differences between the DNA polymerase alpha enzymes (as well as between the DNAs) of human cells of different lineage and, particularly, of leukemic vs. "normal" character; such differences could be exploited in the design of selective antitemplates for chemotherapy.  相似文献   

9.
Atomic force microscopy (AFM, also called scanning force microscopy) is proving to be a useful technique for imaging DNA. Thus it is important to push the limits of AFM imaging in order to explore both what types of DNA can be reliably imaged and identified and also what substrates and methods of sample preparation are suitable. The following advances in AFM of DNA are presented here. (i) DNA molecules as short as 25 bases can be seen by AFM. The short single-stranded DNAs imaged here (25 and 50 bases long) appeared globular in the AFM, perhaps because they are all capable of intramolecular base pairing and because the DNAs were in a Mg(ll) buffer, which facilitates intramolecular cross-bridging. (ii) AFM images in air of short double-stranded DNA molecules, 100-200 bp, gave lengths consistent with A-DNA. (iii) AFM images of poly (A) show both short bent lumpy molecules with an apparent persistence length of 40 nm and long straight molecules with an apparent persistence length of 600 nm. For comparison, the apparent persistence length for double-stranded DNA from phX-174 under the same conditions was 80 nm. (iv) Structures believed to be triple- stranded DNA were seen in samples of poly(dA.poly(dT) and poly (dG).poly(dC). These structures were twice as high as double-stranded DNA and the same width. (v) Entire molecules of lambda DNA, approx. 16 micron long, were imaged clearly in overlapping scans. (vi) Plasmid DNA was imaged on oxidized silicon, although less clearly than on mica.  相似文献   

10.
The photocleavage of double-stranded and single-stranded DNA by the fluorescent dye YOYO-1 was investigated in real time by using the synchrotron radiation light source ASTRID (ISA, Denmark) both to initiate the reaction and to monitor its progress using Couette flow linear dichroism (LD) throughout the irradiation period. The dependence of LD signals on DNA sequences and on time in the intense light beam was explored and quantified for single-stranded poly(dA), poly[(dA-dT)2], calf thymus DNA (ctDNA) and Micrococcus luteus DNA (mlDNA). The DNA and ligand regions of the spectrum showed different LD kinetic behaviors, and there was significant sequence dependence of the kinetics. However, in contrast to expectations from the literature, we found that poly(dA), mlDNA, low salt ctDNA and low salt poly[(dA-dT)2] all had significant populations of groove-bound YOYO. It seems that this mode was predominantly responsible for the catalysis of DNA cleavage. In homopolymeric DNAs, intercalated YOYO was unable to cleave DNA. In mixed-sequence DNAs the data suggest that YOYO in some but not all intercalated binding sites can cause cleavage. It is also likely that cleavage occurs at transient single-stranded regions. The reaction rates for a 100 mA beam current of 0.5-μW power varied from 0.6 h−1 for single-stranded poly(dA) to essentially zero for low salt poly[(dG-dC)2] and high salt poly[(dA-dT)2]. At the conclusion of the experiments with each kind of DNA, uncleaved DNA with intercalated YOYO remained.  相似文献   

11.
12.
Poly(dA).poly(dT), but not B-form DNA, is specifically recognized by experimentally induced anti-kinetoplast or anti-poly(dA).poly(dT) immunoglobulins. Antibody binding is completely competed by poly(dA).poly(dT) and poly(dA).poly(dU) but not by other single- or double-stranded DNA sequences in a right-handed B-form. Antibody interaction with poly(dA).poly(dT) depends on immunoglobulin concentration, incubation time and temperature, and is sensitive to elevated ionic strengths. Similar conformations, for example, (dA)4-6 X (dT)4-6, in the kinetoplast DNA of the parasite Leishmania tarentolae are also immunogenic and induce specific anti-poly(dA).poly(dT) antibodies. These antibody probes specifically recognize nuclear and kinetoplast DNA in fixed flagellated kinetoplastid cells as evidenced by immunofluorescence microscopy. Anti-poly(dA).poly(dT) immunofluorescence is DNase-sensitive and competed by poly(dA).poly(dT), but not other classical double-stranded B-DNAs. Thus, these unique cellular B'-DNA helices are immunogenic and structurally similar to synthetic poly(dA).poly(dT) helices in solution.  相似文献   

13.
The binding heterogeneity, conformational aspects, and energetics of the interaction of the cytotoxic plant alkaloid palmatine have been studied with various natural and synthetic DNAs. The alkaloid binds to calf thymus and Escherichia coli DNA that have mixed AT and GC sequences in almost equal proportions with positive cooperativity, while, with Clostridium perfringens and Micrococcus lysodeikticus DNA with predominantly high AT and GC sequences, respectively, noncooperative binding was observed. On further investigation with synthetic DNAs, the binding was observed to be cooperative with polymers like poly(dA).poly(dT) and poly(dG).poly(dC) having poly(purine)poly(pyrimidine) sequences, while with polymers poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT) and poly(dG-dC).poly(dG-dC), which have alternating purine-pyrimidine sequences, a non-cooperative binding phenomenon was observed. This suggests the binding heterogeneity of palmatine to the two types of sequences of base pairs. Circular dichroism (CD) studies revealed that the binding induced conformational changes in all the DNAs, but more importantly, the bound alkaloid molecules acquired induced optical activity, and the extent was dependent on the AT content and showed AT base-pair specificity. Energetics of the interaction of the alkaloid studied by highly sensitive isothermal titration calorimetry revealed that the binding was in most cases exothermic and favored by both enthalpy and entropy changes, while, in the case of the homo and hetero AT polymers, the same was predominantly entropy-driven. This study defines base-pair-dependent heterogeneity, conformational aspects, and energetics of palmatine binding to DNA.  相似文献   

14.
15.
The requirements of cofactor DNA for DNA-dependent ATPases B and C3 were analyzed in detail. ATPase B and C3 required the presence of a polynucleotide for their activities. Among the DNAs tested, ATPase B showed a preference for poly(dT) as its cofactor. The other deoxyhomopolymers, except poly(dG) and heat-denatured DNA also were effective. The alternating polydeoxyribonucleotide, poly[d(A-T)] had an efficiency 23% that of heat-denatured DNA. Unlike ATPase B, ATPase C3 showed almost no activity with deoxyhomopolymers. The most effective cofactor for ATPase C3 so far tested is poly[d(A-T)]. Relatively high activity was obtained with heat-denatured DNA. The high activity of ATPase B with poly(dT) was reduced by the addition of poly(dA). The addition of noncomplementary homopolymers did not affect enzyme activity. ATPase C3 activity in the presence of 10 microM poly(dT) increased gradually with concentrations of poly(dA) up to 20 microM, after which it decreased. Almost no increase in activity was observed when noncomplementary homopolymers were added. The relatively high activity of ATPase C3 with heat-denatured DNA was suggested by its high sensitivity to ethidium bromide to be due to the double-stranded region in the heat-denatured DNA formed by self-annealing.  相似文献   

16.
H P Vosberg  F Eckstein 《Biochemistry》1977,16(16):3633-3640
We have synthesized fd and phi X174DNA in the presence of 2'-deoxyadenosine 5'-O-(1-thiotriphosphate) (dATP alpha S) and the corresponding phosphorothioate derivatives of dCTP and dTTP using ether-permeabilized E. coli cells or crude cell extracts of E. coli DNA polymerase I. Reaction rates of enzymes involved in the formation or breakdown of DNA are decreased in the presence of phosphorothioates. The amount of label incorporated with [35S]dATP alpha S suggests that the dAMP has been completely substituted by 2'-deoxyadenosine 5'-0-phosphorothioate (dAMPS). The substituted DNAs have the same sedimentation coefficients, similar buoyant density, infectivity, and thermal stability as the unsubstituted DNAs. The procedure therefore allows specific modification at the 5' position of dA, dC, or dT in the DNA. In view of the recent demonstration of specific binding of Pt2+ complexes to the phosphorothioate analogue of poly[r(A-U)] (Strothkamp, K.G., and Lippard, S.J. (1976), Proc. Natl. Acad. Sci. U.S.A. 73, 2536), the synthesis of phosphorothioate containing DNA may be of use for DNA sequencing by electron microscopy.  相似文献   

17.
More than twenty repeating sequence DNAs containing phosphorothioates were prepared from the appropriate dXTPs with DNA polymerase I. The Tms of the modified DNAs were all lower than the parent polymers. A phosphorothioate group 5' to a pyrimidine gave rise to a large decrease than 5' to a purine, e.g., poly(dA).poly(dT) = 50 degrees; poly(dsA).poly(dT) = 44 degrees; poly(dA).poly(dsT) = 33 degrees; and poly(dsA).poly(dsT) = 26 degrees. The presence of phosphorothioate groups had a dramatic effect on triplex formation; poly[d(TC)].poly[d(sGsA)] spontaneously dismutases to a triplex at pH 8 whereas triplex formation in poly[d(sTsC)].poly[d(GA)] was inhibited. Surprisingly poly(dsG).poly(dC) had a Tm which initially decreased with increasing ionic strength. Resistance to digestion with pancreatic DNAse I did not correlate with phosphorothioate content. Poly[d(AsT)], poly[d(TsC)].poly[d(sGA)] and poly[d(sTG)].poly[d(sCA)] were resistant whereas poly[d(sAT)] and poly[d(sTsTG)].poly[d(CsAsA)] were rapidly degraded. Thus phosphorothioate groups cause small conformational changes and may reveal new families of conformational polymorphisms.  相似文献   

18.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

19.
L Wang  T A Keiderling 《Biochemistry》1992,31(42):10265-10271
The vibrational circular dichroism (VCD) spectra of several natural DNAs as well as tRNA, poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) are reported for the base deformation modes in the IR region from 1700 to 1550 cm-1 for the polymers in D2O as well as in high alcohol dehydrating conditions. Spectra of both the B- and A-forms were identified. The A-form DNA VCD, not previously reported, has characteristics that can be found in the VCD spectra of RNAs as would be expected from the similarity of their structures. The VCD is sequence-dependent. Under the dehydrating conditions studied, poly(dA-dT)poly(dA-dT),poly(dA).poly(dT), and a high-A-T fraction natural DNA had a different bandshape from the other DNAs, which was similar to that of poly(rA).poly(rU). Poly(dG-dC).poly-(dG-dC) did not form an A-form in high-alcohol conditions but instead had a VCD spectrum much like that of its high-salt-induced Z-form. Qualitative differences seen experimentally between A- and B-form DNA VCD were suggested by the differences in the coupled oscillator VCD calculated for the two forms.  相似文献   

20.
The paper presents results obtained in conformational analysis of homopolymeric four-stranded poly(dT).poly(dA).poly(dA).poly(dT) DNA helices in which the pairs of strands with identical bases are parallel and have a two-fold symmetry axis. All possible models of base binding to yield a symmetric complex have been considered. The dihedral angles of sugar-phosphate backbones and helix parameters, which are consistent with the minima of conformational energy for four-stranded DNAs, have been determined using the results of optimization of conformational energy calculated at atom-atom approximation. Potential energy is shown to depend on the structure of base complexes and on the mutual orientation of unlike strands. Possible biological functions of four-stranded helices are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号