首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have used a combination of cysteine substitution mutagenesis and site-specific labeling to characterize the structural dynamics of mouse acetylcholinesterase (mAChE). Six cysteine-substituted sites of mAChE (Leu(76), Glu(81), Glu(84), Tyr(124), Ala(262), and His(287)) were labeled with the environmentally sensitive fluorophore, acrylodan, and the kinetics of substrate hydrolysis and inhibitor association were examined along with spectroscopic characteristics of the acrylodan-conjugated, cysteine-substituted enzymes. Residue 262, being well removed from the active center, appears unaffected by inhibitor binding. Following the binding of ligand, hypsochromic shifts in emission of acrylodan at residues 124 and 287, located near the perimeter of the gorge, reflect the exclusion of solvent and a hydrophobic environment created by the associated ligand. By contrast, the bathochromic shifts upon inhibitor binding seen for acrylodan conjugated to three omega loop (Omega loop) residues 76, 81, and 84 reveal that the acrylodan side chains at these positions are displaced from a hydrophobic environment and become exposed to solvent. The magnitude of fluorescence emission shift is largest at position 84 and smallest at position 76, indicating that a concerted movement of residues on the Omega loop accompanies gorge closure upon ligand binding. Acrylodan modification of substituted cysteine at position 84 reduces ligand binding and steady-state kinetic parameters between 1 and 2 orders of magnitude, but a similar substitution at position 81 only minimally alters the kinetics. Thus, combined kinetic and spectroscopic analyses provide strong evidence that conformational changes of the Omega loop accompany ligand binding.  相似文献   

2.
The paradox of high substrate turnover occurring within the confines of a deep, narrow gorge through which acetylcholine must traverse to reach the catalytic site of acetylcholinesterase has suggested the existence of transient gorge enlargements that would enhance substrate accessibility. To establish a foundation for the experimental study of transient fluctuations in structure, site-directed labeling in conjunction with time-resolved fluorescence anisotropy were utilized to assess the possible involvement of the omega loop (Omega loop), a segment that forms the outer wall of the gorge. Specifically, the flexibility of three residues (L76C, E81C, and E84C) in the Cys69-Cys96 Omega loop and one residue (Y124C) across the gorge from the Omega loop were studied in the absence and presence of two inhibitors of different size, fasciculin and huperzine. Additionally, to validate the approach molecular dynamics was employed to simulate anisotropy decay of the side chains. The results show that the Omega loop residues are significantly more mobile than the non-loop residue facing the interior of the gorge. Moreover, fasciculin, which binds at the mouth of the gorge, well removed from the active site, decreases the mobility of 5-((((2-acetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid reporter groups attached to L76C and Y124C but increases the mobility of the reporter groups attached to E81C and E84C. Huperzine, which binds at the base of active-site gorge, has no effect on the mobility of reporter groups attached to L76C and Y124C but increases the mobility of the reporter groups attached to E81C and E84C. Besides showing that fluctuations of the Omega loop residues are not tightly coupled, the results indicate that residues in the Omega loop exhibit distinctive conformational fluctuations and therefore are likely to contribute to transient gorge enlargements in the non-liganded enzyme.  相似文献   

3.
Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In Synechococcus sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high light stress require activation by the phosphorylation-independent response regulator NblR. Structural modelling of its receiver domain suggested a role for Cys69 and Cys96 on activation of NblR. Here, we investigate this hypothesis by engineering Cys to Ala substitutions. In vivo and in vitro analyses indicated that mutations Cys69Ala and/or Cys96Ala have a minor impact on NblR function, structure, size, or oligomerization state of the protein, and that Cys69 and Cys96 do not seem to form disulphide bridges. Our results argue against the predicted involvement of Cys69 and Cys96 on NblR activation by redox sensing.  相似文献   

4.
Existence of alternative entrances in acetylcholinesterase (AChE) could explain the contrast between the very high AChE catalytic efficiency and the narrow and long access path to the active site revealed by X-ray crystallography. Alternative entrances could facilitate diffusion of the reaction products or at least water and ions from the active site. Previous molecular dynamics simulations identified side door and back door as the most probable alternative entrances. The simulations of non-inhibited AChE suggested that the back door opening events occur only rarely (0.8% of the time in the 10ns trajectory). Here we present a molecular dynamics simulation of non-inhibited AChE, where the back door opening appears much more often (14% of the time in the 12ns trajectory) and where the side door opening was observed quite frequently (78% of trajectory time). We also present molecular dynamics, where the back door does not open at all, or where large conformational changes of the AChE omega loop occur together with alternative passage opening events. All these differences in AChE dynamical behavior are caused by different protonation states of two glutamate residues located on bottom of the active site gorge (Glu202 and G450 in Mus musculus AChE). Our results confirm the results of previous molecular dynamics simulations, expand the view and suggest the probable reasons for the overall conformational behavior of AChE omega loop.  相似文献   

5.
Class I hydrophobins are fungal proteins that self-assemble into robust amphipathic rodlet monolayers on the surface of aerial structures such as spores and fruiting bodies. These layers share many structural characteristics with amyloid fibrils and belong to the growing family of functional amyloid-like materials produced by microorganisms. Although the three-dimensional structure of the soluble monomeric form of a class I hydrophobin has been determined, little is known about the molecular structure of the rodlets or their assembly mechanism. Several models have been proposed, some of which suggest that the Cys3-Cys4 loop has a critical role in the initiation of assembly or in the polymeric structure. In order to provide insight into the relationship between hydrophobin sequence and rodlet assembly, we investigated the role of the Cys3-Cys4 loop in EAS, a class I hydrophobin from Neurospora crassa. Remarkably, deletion of up to 15 residues from this 25-residue loop does not impair rodlet formation or reduce the surface activity of the protein, and the physicochemical properties of rodlets formed by this mutant are indistinguishable from those of its full-length counterpart. In addition, the core structure of the truncation mutant is essentially unchanged. Molecular dynamics simulations carried out on the full-length protein and this truncation mutant binding to an air-water interface show that, although it is hydrophobic, the loop does not play a role in positioning the protein at the surface. These results demonstrate that the Cys3-Cys4 loop does not have an integral role in the formation or structure of the rodlets and that the major determinant of the unique properties of these proteins is the amphipathic core structure, which is likely to be preserved in all hydrophobins despite the high degree of sequence variation across the family.  相似文献   

6.
X-ray crystal structures of enzyme-ligand complexes are widely believed to mimic states in the catalytic cycle, but this presumption has seldom been carefully scrutinized. In the case of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase (IMPDH), 10 structures of various enzyme-substrate-inhibitor complexes have been determined. The Cys319 loop is found in at least three different conformations, suggesting that its conformation changes as the catalytic cycle progresses from the dehydrogenase step to the hydrolase reaction. Alternatively, only one conformation of the Cys319 loop may be catalytically relevant while the others are off-pathway. Here we differentiate between these two hypotheses by analyzing the effects of Ala substitutions at three residues of the Cys319 loop, Arg322, Glu323, and Gln324. These mutations have minimal effects on the value of k(cat) (≤5-fold) that obscure large effects (>10-fold) on the microscopic rate constants for individual steps. These substitutions increase the equilibrium constant for the dehydrogenase step but decrease the equilibrium between open and closed conformations of a mobile flap. More dramatic effects are observed when Arg322 is substituted with Glu, which decreases the rates of hydride transfer and hydrolysis by factors of 2000 and 130, respectively. These experiments suggest that the Cys319 loop does indeed have different conformations during the dehydrogenase and hydrolase reactions as suggested by the crystal structures. Importantly, these experiments reveal that the structure of the Cys319 loop modulates the closure of the mobile flap. This conformational change converts the enzyme from a dehydrogenase into hydrolase, suggesting that the conformation of the Cys319 loop may gate the catalytic cycle.  相似文献   

7.
The reduction, carboxymethylation and mercuration of disulfide bond, Cys250-Cys283, located on the surface of bovine chymosin molecule resulted in the loss of about 25% of enzyme activity, suggesting that Cys250-Cys283 is not intimately involved in catalytic mechanism. Cys250 and Cys283 were substituted with Asp. and Ser. by site- directed mutagenesis of the structural gene coding for bovine prochymosin B. All three mutants (C250D/C283S, C250D, C283S) failed to be activated to chymosin in acid, indicating that Cys250-Cys283 might have some contribution to the correct refolding of the unfolded prochymosin.  相似文献   

8.
The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein.  相似文献   

9.
The structural and functional consequences of replacing omega-loop A (residues 18-32) in yeast iso-1-cytochrome c with the corresponding loop of Rhodospirillum rubrum cytochrome c2 have been examined. The three-dimensional structure of this loop replacement mutant RepA2 cytochrome c, and a second mutant RepA2(Val 20) cytochrome c in which residue 20 was back substituted to valine, were determined using X-ray diffraction techniques. A change in the molecular packing is evident in the RepA2 mutant protein, which has a phenylalanine at position 20, a residue considerably larger than the valine found in wild-type yeast iso-1-cytochrome c. The side chain of Phe 20 is redirected toward the molecular surface, altering the packing of this region of omega-loop A with the hydrophobic core of the protein. In the RepA2(Val 20) structure, omega-loop A contains a valine at position 20, which restores the original wild-type packing arrangement of the hydrophobic core. Also, as a result of omega-loop A replacement, residue 26 is changed from a histidine to asparagine, which results in displacements of the main-chain atoms near residue 44 to which residue 26 is hydrogen bonded. In vivo studies of the growth rate of the mutant strains on nonfermentable media indicate that the RepA2(Val 20) cytochrome c behaves much like the wild-type yeast iso-1 protein, whereas the stability and function of the RepA2 cytochrome c showed a temperature dependence. The midpoint reduction potential measured by cyclic voltammetry of the RepA2 mutant is 271 mV at 25 degrees C. This is 19 mV less than the wild-type and RepA2(Val 20) proteins (290 mV) and may result from disruption of the hydrophobic packing in the heme pocket and increased mobility of omega-loop A in RepA2 cytochrome c. The temperature dependence of the reduction potential is also greatly enhanced in the RepA2 protein.  相似文献   

10.
Human chorionic gonadotropin (hCG) is a heterodimeric glycoprotein hormone essential for the establishment and maintenance of pregnancy. The alpha- and beta-subunits of hCG are highly cross-linked internally by disulfide bonds that seem to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This paper describes the results of our studies on the role of the disulfide bonds of hCG-beta in heterodimer formation with the alpha-subunit. Six disulfide peptides incorporating each of the six disulfide bonds of hCG-beta were screened, along with their linear counterparts, for their ability to competitively inhibit the recombination of alpha- and beta-subunits. The disulfide peptides Cys (9-57), Cys (34-88) and Cys (38-90) were found to inhibit the alpha/beta recombination whereas the remaining three disulfide peptides viz. Cys (23-72), Cys (26-110) and Cys (93-100) did not exhibit any inhibition activity. Interestingly, none of the linear peptides could inhibit the alpha/beta recombination. Results clearly demonstrate that the disulfide bonds Cys(9)-Cys(57), Cys(34)-Cys(88) and Cys(38)-Cys(90) of the beta-subunit of hCG are crucial for heterodimer formation with the alpha-subunit thus providing experimental confirmation of the conclusions from the crystal structure of the hormone.  相似文献   

11.
Chen H  Zhang G  Zhang Y  Dong Y  Yang K 《Biochemistry》2000,39(40):12140-12148
Prochymosin (chymosin) contains three disulfide bonds: Cys45-Cys50, Cys206-Cys210, and Cys250-Cys283. We have demonstrated that Cys250-Cys283 is indispensable for correct refolding of prochymosin, whereas Cys45-Cys50 is dispensable but has some contribution to the stability and substrate specificity of the enzyme. Here, we report the results about the functions of Cys206-Cys210 by site-directed mutagenesis studies. In a glutathione redox system C206A/C210A mutant exhibited oxidative refolding kinetics and efficiency ( approximately 40% reactivation) similar to those of the wild-type prochymosin, indicating that Cys206-Cys210 is also dispensable for refolding. However, C206S/C210S and single-site mutants (C210A, C210S, and C206A) showed only about 3 and 0-0.4% reactivation, respectively. This is quite different from the Cys45-Cys50 deficient mutants (C45A, C50A, C45A/C50A, C45D, C50S, C45D/C50S, C45A/C50S), which have comparable refolding efficiencies, implying that the substituents at position 206 and 210 play more important role in determining correct refolding than those at position 45 and 50. Urea-induced denaturation and fluorescence quenching studies indicated that the prochymosin mutants C206A/C210A and C206S/C210S were 2.1 and 4.8 kJ/mol less stable than prochymosin and some tryptophan residue in the mutated molecules was less exposed. However, the wild-type and mutant prochymosins shared similar far-UV CD and fluorescence emission spectra and similar specific potential activity, suggesting that the overall conformation was maintained after mutation. Activity assay and kinetic analysis revealed that mutation did not change the specific milk-clotting activity significantly but resulted in an increase in K(m) and k(cat) toward a hexapeptide substrate. On the basis of the above-mentioned perturbance of tryptophanyl microenvironment and the three-dimensional structure of chymosin, we proposed that deletion of Cys206-Cys210 may induce a propagated conformational change, resulting in a perturbance of the local conformation around active-site cleft and in turn, an alteration of the substrate specificity.  相似文献   

12.
An insertion of residues in the third extracellular loop and a disulfide bond linking this loop to the N-terminal domain were identified in a structural model of a G-protein coupled receptor specific to angiotensin II (AT1 receptor), built in homology to the seven-transmembrane-helix bundle of rhodopsin. Both the insertion and the disulfide bond were located close to an extracellular locus, flanked by the second extracellular loop (EC-2), the third extracellular loop (EC-3) and the N-terminal domain of the receptor; they contained residues identified by mutagenesis studies to bind the angiotensin II N-terminal segment (residues D1 and R2). It was postulated that the insertion and the disulfide bond, also found in other receptors such as those for bradykinin, endothelin, purine and other ligands, might play a role in regulating the function of the AT1 receptor. This possibility was investigated by assaying AT1 forms devoid of the insertion and with mutations to Ser on both positions of Cys residues forming the disulfide bond. Binding and activation experiments showed that abolition of this bond led to constitutive activation, decay of agonist binding and receptor activation levels. Furthermore, the receptors thus mutated were translocated to cytosolic environments including those in the nucleus. The receptor form with full deletion of the EC-3 loop residue insertion, displayed a wild type receptor behavior.  相似文献   

13.
Platelet-type von Willebrand disease is a bleeding disorder resulting from gain-of-function mutations of glycoprotein (GP) Ibalpha that increase its affinity for von Willebrand factor (vWf). The two known naturally occurring mutations, G233V and M239V, both enrich the valine content of an already valine-rich region within the Cys(209)-Cys(248) disulfide loop. We tested the effect of converting other non-valine residues in this region to valine. Of 10 mutants expressed in CHO cells as components of GP Ib-IX complexes, four displayed a gain-of-function phenotype (G233V, D235V, K237V, and M239V) based on (125)I-vWf binding and adhesion to immobilized vWf. The remainder displayed loss-of-function phenotypes. The gain-of-function mutants bound vWf spontaneously and had a heightened response to low concentrations of ristocetin or botrocetin, whereas the loss-of-function mutants bound vWf more poorly than wild-type GP Ibalpha. No distinct gain- or loss-of-function conformations were identified with conformation-sensitive antibodies. Compared with cells expressing wild-type GP Ibalpha, cells expressing the gain-of-function mutants rolled significantly more slowly over immobilized vWf under flow than wild-type cells and were able to adhere to vWf coated at lower densities. In aggregate, these data indicate that the region of GP Ibalpha bounded by Asn(226) and Ala(244) regulates the affinity for vWf.  相似文献   

14.
Omega (omega)-loop A, residues 18-32 in wild-type yeast iso-1-cytochrome c, has been deleted and replaced with loop sequences from three other cytochromes c and one from esterase. Yeast expressing a partial loop deletion do not contain perceptible amounts of holoprotein as measured by low-temperature spectroscopy and cannot grow on nonfermentable media. Strains expressing loop replacement mutations accumulate holoprotein in vivo, but the protein function varies depending on the sequence and length of the replacement loop; in vivo expression levels do not correlate with their thermal denaturation temperatures. In vitro spectroscopic studies of the loop replacement proteins indicate that all fold into a native-like cytochrome c conformation, but are less stable than the wild-type protein. Decreases in thermal stability are caused by perturbation of loop C backbone in one case and a slight reorganization of the protein hydrophobic core in another case, rather than rearrangement of the loop A backbone. A single-site mutation in one of the replacement mutants designed to relieve inefficient hydrophobic core packing caused by the new loop recovers some, but not all, of the lost stability.  相似文献   

15.
G protein-coupled receptors represent the largest class of drug discovery targets. Drugs that activate G protein-coupled receptors are classified as either agonists or partial agonists. To study the mechanism whereby these different classes of activating ligands modulate receptor function, we directly monitored ligand-induced conformational changes in the G protein-coupling domain of the beta(2) adrenergic receptor. Fluorescence lifetime analysis of a reporter fluorophore covalently attached to this domain revealed that, in the absence of ligands, this domain oscillates around a single detectable conformation. Binding to an antagonist does not change this conformation but does reduce the flexibility of the domain. However, when the beta(2) adrenergic receptor is bound to a full agonist, the G protein coupling domain exists in two distinct conformations. Moreover, the conformations induced by a full agonist can be distinguished from those induced by partial agonists. These results provide new insight into the structural consequence of antagonist binding and the basis of agonism and partial agonism.  相似文献   

16.
Highlights? The Schistosoma mansoni peroxiredoxin I (SmPrxI) is a moonlighting protein ? SmPrxI switches from LMW peroxidase to HMW chaperone due to chemical stressors ? The three-dimensional structures of both LMW and HMW SmPrxI have been solved ? SmPrxI HMW is the structure of a Prx chaperone  相似文献   

17.
The solution structure of a 38-amino-acid-residue, biologically active fragment of bovine growth hormone (bGH96-133) was investigated with a combined nuclear magnetic resonance (NMR) and computer modeling approach. With the distance geometry program DISGEO and distance constraints derived from nuclear Overhauser enhancement (NOE) experiments, it was found that residues Ser-100 to Tyr-110 circumscribe and omega-loop, a recently categorized feature of nonregular secondary protein structure.  相似文献   

18.
In order to investigate the biochemical nature of intracellular cascades leading to cellular differentiation in vitro, we examined the effect of inhibitors of protein phosphorylation on terminal erythroid differentiation of mouse erythroleukemia (MEL) cells. We have found that specific inhibitors of protein phosphorylation at tyrosine residues, ST638 and genistein, effectively induce differentiation in a synergistic manner with an agent which blocks DNA replication such as mitomycin C (MMC). Based upon these findings, the possible involvement of protein phosphorylation (and dephosphorylation) at tyrosine residues in differentiation is discussed.  相似文献   

19.
A Tramontano  A M Lesk 《Proteins》1992,13(3):231-245
Using database screening techniques we have examined the relationship between antigen-binding loops in immunoglobulins, and regions of similar conformation in other protein families. The conformations of most antigen-binding loops are not unique to immunoglobulins. But in many cases, the geometrical relationship between the loop and the peptides flanking it differs between the immunoglobulins and other structures with the same loop. We assess model building by data base screening, compared with that based on canonical structures.  相似文献   

20.
BACKGROUND: The third hypervariable (V3) loop of HIV-1 gp120 has been termed the principal neutralizing determinant (PND) of the virus and is involved in many aspects of virus infectivity. The V3 loop is required for viral entry into the cell via membrane fusion and is believed to interact with cell surface chemokine receptors on T cells and macrophages. Sequence changes in V3 can affect chemokine receptor usage, and can, therefore, modulate which types of cells are infected. Antibodies raised against peptides with V3 sequences can neutralize laboratory-adapted strains of the virus and inhibit syncytia formation. Fab fragments of these neutralizing antibodies in complex with V3 loop peptides have been studied by X-ray crystallography to determine the conformation of the V3 loop. RESULTS: We have determined three crystal structures of Fab 58.2, a broadly neutralizing antibody, in complex with one linear and two cyclic peptides the amino acid sequence of which comes from the MN isolate of the gp120 V3 loop. Although the peptide conformations are very similar for the linear and cyclic forms, they differ from that seen for the identical peptide bound to a different broadly neutralizing antibody, Fab 59.1, and for a similar peptide bound to the MN-specific Fab 50.1. The conformational difference in the peptide is localized around residues Gly-Pro-Gly-Arg, which are highly conserved in different HIV-1 isolates and are predicted to adopt a type II beta turn. CONCLUSIONS: The V3 loop can adopt at least two different conformations for the highly conserved Gly-Pro-Gly-Arg sequence at the tip of the loop. Thus, the HIV-1 V3 loop has some inherent conformational flexibility that may relate to its biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号