首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons   总被引:8,自引:0,他引:8  
Microtubule-dependent transport of vesicles and organelles appears saltatory because particles switch between periods of rest, random Brownian motion, and active transport. The transport can be regulated through motor proteins, cargo adaptors, or microtubule tracks. We report here a mechanism whereby microtubule associated proteins (MAPs) represent obstacles to motors which can be regulated by microtubule affinity regulating kinase (MARK)/Par-1, a family of kinases that is known for its involvement in establishing cell polarity and in phosphorylating tau protein during Alzheimer neurodegeneration. Expression of MARK causes the phosphorylation of MAPs at their KXGS motifs, thereby detaching MAPs from the microtubules and thus facilitating the transport of particles. This occurs without impairing the intrinsic activity of motors because the velocity during active movement remains unchanged. In primary retinal ganglion cells, transfection with tau leads to the inhibition of axonal transport of mitochondria, APP vesicles, and other cell components which leads to starvation of axons and vulnerability against stress. This transport inhibition can be rescued by phosphorylating tau with MARK.  相似文献   

2.
Tacrine (1,2,3,4-tetrahydro-9-acridinamine monohydrate) is an inhibitor of acetylcholinesterase currently used in the treatment of the symptoms of Alzheimer's disease. The present study demonstrates preferential binding of this drug to acidic phospholipids, as revealed by fluorescence polarization, penetration into lipid monolayers, and effects on the thermal phase behavior of dimyristoyl phosphatidic acid (DMPA). A fivefold enhancement in the polarization of tacrine emission is evident above the main phase transition temperature (T(m)) of DMPA vesicles, whereas below T(m) only a 0.75-fold increase is observed. In contrast, the binding of tacrine to another acidic phospholipid, dimyristoylphosphatidylglycerol, did not exhibit strong dependence on T(m). In accordance with the electrostatic nature of the membrane association of tacrine, the extent of binding was augmented with increasing contents of egg PG in phosphatidylcholine liposomes. Furthermore, [NaCl] > 50 mM dissociates tacrine (albeit incompletely) from the liposomes composed of acidic phospholipids. Inclusion of the cationic amphiphile sphingosine in egg PG vesicles decreased the membrane association of tacrine until at 1:1 sphingosine: egg PG stoichiometry binding was no longer evident. Tacrine also penetrated into egg PG but not into egg PC monolayers. Together with broadening of the main transition and causing a shoulder on its high temperature side, the binding of tacrine to DMPA liposomes results in a concentration-dependent reduction both in the combined enthalpy delta H of the above overlapping endotherms and the main transition temperature T(m). Interestingly, these changes in the thermal phase behavior of DMPA as a function of the content of the drug in vesicles were strongly nonlinear. More specifically, upon increasing [tacrine], T(m) exhibited stepwise decrements. Simultaneously, sharp minima in delta H were observed at drug:lipid stoichiometries of approximately 2:100 and 25:100, whereas a sharp maximum in delta H was evident at 18:100. The above results are in keeping with tacrine causing phase separation processes in the bilayer and may also relate to microscopic drug-induced ordering processes within the membrane.  相似文献   

3.
4.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

5.
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.  相似文献   

6.
In regulated vesicle exocytosis, SNARE protein complexes drive membrane fusion to connect the vesicle lumen with the extracellular space. The triggering of fusion pore formation by Ca2+ is mediated by specific isoforms of synaptotagmin (Syt), which employ both SNARE complex and membrane binding. Ca2+ also promotes fusion pore expansion and Syts have been implicated in this process but the mechanisms involved are unclear. We determined the role of Ca2+-dependent Syt-effector interactions in fusion pore expansion by expressing Syt-1 mutants selectively altered in Ca2+-dependent SNARE binding or in Ca2+-dependent membrane insertion in PC12 cells that lack vesicle Syts. The release of different-sized fluorescent peptide-EGFP vesicle cargo or the vesicle capture of different-sized external fluorescent probes was used to assess the extent of fusion pore dilation. We found that PC12 cells expressing partial loss-of-function Syt-1 mutants impaired in Ca2+-dependent SNARE binding exhibited reduced fusion pore opening probabilities and reduced fusion pore expansion. Cells with gain-of-function Syt-1 mutants for Ca2+-dependent membrane insertion exhibited normal fusion pore opening probabilities but the fusion pores dilated extensively. The results indicate that Syt-1 uses both Ca2+-dependent membrane insertion and SNARE binding to drive fusion pore expansion.  相似文献   

7.
Activation domains drive nucleosome eviction by SWI/SNF   总被引:4,自引:0,他引:4  
  相似文献   

8.
Soybean triacylglycerol particles stabilized with soybean phosphatidylinositol (PI), bovine brain phosphatidylserine (PS), egg yolk phosphatidylcholine (PC) or mixtures of these acidic and neutral phospholipids were prepared with diameters ranging from 250 to 520 nm. Binding of apoproteins to the lipid particles was studied using the strategy of Connelly and Kuksis. The recoveries of the injected particles, which had undergone minimal changes in lipid composition, ranged rom 57% for the PC-stabilized emulsions to 21% for the emulsions stabilized with PS and 8% for the emulsions stabilized with PI. The apoprotein (apo) composition of the recovered particles showed characteristic qualitative and quantitative differences. The particles stabilized with PI and PS or PI-phosphatidylethanolamine contained an unknown protein of molecular weight 117,000 (43-48%) and albumin (9-13%) as major components. The apoC-II, apoC-III, apoA-I, apoE, and apoA-IV were present as minor components in ratios that were the reverse of those seen for the PC-stabilized particles, which contained these proteins as major components. The relative strength of the binding of the proteins, which was determined by washing the particles with saline under standard conditions, also showed variations among the different particles and different apoproteins. The lipid particles stabilized with the acidic phospholipids had less total apoprotein and held it less tightly than the particles stabilized with PC. It is concluded that the binding of apoproteins by lipid particles stabilized with acidic phospholipids involves hydrophobic and ionic interactions, both of which may be physiologically important.  相似文献   

9.
The effect of phospholipids on the activity of the plasma membrane (PM) Ca2+-ATPase was evaluated in PM isolated from germinating radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) seeds after removal of endogenous calmodulin (CaM) by washing the PM vesicles with EDTA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4,5-diphosphate (PIP2)≈phosphatidylinositol 4-monophosphate>phosphatidylinositol≈phosphatidylserine≈phosphatidic acid. Neutral phospholipids as phosphatidylcholine and phosphatidylethanolamine were essentially ineffective. When the assays were performed in the presence of optimal free Ca2+ concentrations (10 μ M ) acidic phospholipids did not affect the Ca2+-ATPase activated by CaM or by a controlled trypsin treatment of the PM, which cleaved the CaM-binding domain of the enzyme. Analysis of the dependence of Ca2+-ATPase activity on free Ca2+ concentration showed that acidic phospholipids increased Vmax and lowered the apparent Km for free Ca2+ below the value measured upon tryptic cleavage of the CaM-binding domain; in particular, PIP2 was shown to lower the apparent Km for free Ca2+ of the Ca2+-ATPase also in trypsin-treated PM. These results indicate that acidic phospholipids activate the plant PM Ca2+-ATPase through a mechanism only partially overlapping that of CaM, and thus involving a phospholipid-binding site in the Ca2+-ATPase distinct from the CaM-binding domain. The physiological implications of these results are discussed.  相似文献   

10.
11.
Myosin heavy chain kinase (MHCK) A phosphorylates mapped sites at the C-terminal tail of Dictyostelium myosin II heavy chain, driving disassembly of myosin filaments both in vitro and in vivo. MHCK A is organized into three functional domains that include an N-terminal coiled-coil region, a central kinase catalytic domain unrelated to conventional protein kinases, and a WD repeat domain at the C terminus. MHCK B is a homologue of MHCK A that possesses structurally related catalytic and WD repeat domains. In the current study, we explored the role of the WD repeat domains in defining the activities of both MHCK A and MHCK B using recombinant bacterially expressed truncations of these kinases either with or without their WD repeat domains. We demonstrate that substrate targeting is a conserved function of the WD repeat domains of both MHCK A and MHCK B and that this targeting is specific for Dictyostelium myosin II filaments. We also show that the mechanism of targeting involves direct binding of the WD repeat domains to the myosin substrate. To our knowledge, this is the first report of WD repeat domains physically targeting attached kinase domains to their substrates. The examples presented here may serve as a paradigm for enzyme targeting in other systems.  相似文献   

12.
TRESK (TWIK-related spinal cord K(+) channel, KCNK18) is a major background K(+) channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+) channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+) current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279) in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.  相似文献   

13.
The Par1 kinases, also known as microtubule affinity-regulating kinases (MARKs), are important for the establishment of cell polarity from worms to mammals. Dysregulation of these kinases has been implicated in autism, Alzheimer’s disease and cancer. Despite their important function in health and disease, it has been unclear how the activity of MARK/Par1 is regulated by signals from cell surface receptors. Here we show that MARK/Par1 is activated downstream of NMDA receptors in primary hippocampal neurons. Further, we show that this activation is dependent on protein kinase A (PKA), through the phosphorylation of Ser431 of Par4/LKB1, the major upstream kinase of MARK/Par1. Together, our data reveal a novel mechanism by which MARK/Par1 is activated at the neuronal synapse.  相似文献   

14.

Background  

The related proteins Boi1 and Boi2, which appear to promote polarized growth in S. cerevisiae, both contain a PH (pleckstrin homology) and an SH3 (src homology 3) domain. Previously, we gained evidence that a PH domain-bearing segment of Boi1, which we call Boi1-PH, is sufficient and necessary for function. In the current study, we investigate the binding of Boi1's PH domain to the acidic phospholipids PIP2 (phosphatidylinositol-4,5-bisphosphate) and PS (phosphatidylserine).  相似文献   

15.
The heterogeneous nuclear ribonucleoprotein (hnRNP) K homology (KH) domain is an evolutionarily conserved module that binds short ribonucleotide sequences. KH domains most often are present in multiple copies per protein. In vitro studies of hnRNP K and other KH domain bearing proteins have yielded conflicting results regarding the relative contribution of each KH domain to the binding of target RNAs. To assess this RNA-binding we used full-length hnRNP K, its fragments and the yeast ortholog as baits in the yeast three-hybrid system. The results demonstrate that in this heterologous in vivo system, the three KH domains bind RNA synergistically and that a single KH domain, in comparison, binds RNA weakly.  相似文献   

16.
The Ser/Thr kinase MARK2 phosphorylates tau protein at sites that cause detachment from microtubules in Alzheimer neurofibrillary degeneration. Homologs of MARK2 include Par-1 in C. elegans and Drosophila, which generates embryonic polarity. We report the X-ray structure of the catalytic and ubiquitin-associated domains (UBA) of human MARK2. The activity was altered by mutations in the ATP binding site and/or activation loop. The catalytic domain shows the small and large lobes typical of kinases. The substrate cleft is in an inactive, open conformation in the inactivated and the wild-type structure. The UBA domain is attached via a taut linker to the large lobe of the kinase domain and leans against a hydrophobic patch on the small lobe. The UBA structure is unusual because the orientation of its third helix is inverted, relative to previous structures. Possible implications of the structure for the regulation of kinase activity are discussed.  相似文献   

17.
We have compared HMG1 with the product of tryptic removal of its acidic C-terminal domain termed HMG3, which contains two 'HMG-box' DNA-binding domains. (i) HMG3 has a higher affinity for DNA than HMG1. (ii) Both HMG1 and HMG3 supercoil circular DNA in the presence of topoisomerase I. Supercoiling by HMG3 is the same at approximately 50 mM and approximately 150 mM ionic strength, as is its affinity for DNA, whereas supercoiling by HMG1 is less at 150 mM than at 50 mM ionic strength although its affinity for DNA is unchanged, showing that the acidic C-terminal tail represses supercoiling at the higher ionic strength. (iii) Electron microscopy shows that HMG3 at a low protein:DNA input ratio (1:1 w/w; r = 1), and HMG1 at a 6-fold higher ratio, cause looping of relaxed circular DNA at 150 mM ionic strength. Oligomeric protein 'beads' are apparent at the bases of the loops and at cross-overs of DNA duplexes. (iv) HMG3 at high input ratios (r = 6), but not HMG1, causes DNA compaction without distortion of the B-form. The two HMG-box domains of HMG1 are thus capable of manipulating DNA by looping, compaction and changes in topology. The acidic C-tail down-regulates these effects by modulation of the DNA-binding properties.  相似文献   

18.
It has previously been shown that when pig liver mitochondria are extracted with methyl ethyl ketone in the presence of 0.05 m ammonium sulfate, approximately one-fourth of their monoamine oxidase can subsequently be extracted with buffer. To investigate the binding of the enzyme to the mitochondrial structure, the liberation of enzyme was compared with the extraction of individual phospholipids under various extraction conditions. Phosphatidylethanolamine and phosphatidylcholine could be largely extracted without liberation of monoamine oxidase, whereas there was a correlation between the yield of monoamine oxidase soluble in buffer and the extraction of anionic phospholipids, cardiolipin being the major constituent. When a dispersion of phospholipids from an extraction step effective in liberating monoamine oxidase was added to the buffer used to extract soluble enzyme, less enzyme was liberated from the lipid-depleted mitochondria. Addition of phospholipids from a noneffective extraction step had no effect. It is suggested that the binding of the enzyme to mitochondria depends on the presence of anionic phospholipids.  相似文献   

19.
The microtubule-associated protein (MAP)/microtubule affinity regulating kinase (MARK)/Par-1 phosphorylates microtubule-associated proteins tau, MAP2, and MAP4 and is involved in the regulation of microtubule-based transport. Par-1, a homologue of MARK in Drosophila and Caenorhabditis elegans, is essential for the development of embryonic polarity. Four isoforms of MARK are found in humans. Recently, we reported the crystal structure of the catalytic and ubiquitin-associated domains of MARK2, an isoform enriched in brain (Panneerselvam, S., Marx, A., Mandelkow, E.-M., and Mandelkow, E. (2006) Structure 14, 173-183). It showed that the ubiquitin-associated domain (UBA) domain has an unusual fold and binds to the N-terminal lobe of the catalytic domain. This is at variance with a previous low resolution structure derived from small angle solution scattering (Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., and Alessi, D. R. (2006) Biochem. J. 394, 545-555), which predicts binding of the UBA domain to the larger, C-terminal lobe. Here we report the crystal structure of the catalytic and UBA domain of another isoform, MARK1. Although the crystal packing of the two isoforms are unrelated, the overall conformations of the molecules are similar. Notably, the UBA domain has the same unusual conformation as in MARK2, and it binds at the same site. Remarkable differences occur in the catalytic domain at helix C, the catalytic loop, and the activation segment.  相似文献   

20.
Nucleated cells eliminate lesions induced by bacterial pore-forming toxins, such as pneumolysin via shedding patches of damaged plasmalemma into the extracellular milieu. Recently, we have shown that the majority of shed pneumolysin is present in the form of inactive pre-pores. This finding is surprising considering that shedding is triggered by Ca2+-influx following membrane perforation and therefore is expected to positively discriminate for active pores versus inactive pre-pores.Here we provide evidence for the existence of plasmalemmal domains that are able to attract pneumolysin at high local concentrations. Within such a domain an immediate plasmalemmal perforation induced by a small number of pneumolysin pores would be capable of triggering the elimination of a large number of not yet active pre-pores/monomers and thus pre-empt more frequent and perilous perforation events. Our findings provide further insights into the functioning of the cellular repair machinery which benefits from an inhomogeneous plasmalemmal distribution of pneumolysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号