首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.  相似文献   

2.
Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first. Somatic aposporous initial (AI) cells differentiate near meiotic cells, and the sexual pathway is terminated as AI cells undergo mitotic embryo sac formation. Seed initiation is fertilization-independent. Using a partially penetrant cytotoxic reporter to inhibit meioisis, we showed that developmental events leading to the completion of meiotic tetrad formation are required for AI cell formation. Sexual initiation may therefore stimulate activity of the LOA locus, which was found to be required for AI cell formation and subsequent suppression of the sexual pathway. AI cells undergo nuclear division to form embryo sacs, in which LOP functions gametophytically to stimulate fertilization-independent embryo and endosperm formation. Loss of function in either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in total reversion to sexual reproduction. Therefore, in these apomicts, sexual reproduction is the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode genes essential for sexual reproduction, but may function to recruit the sexual machinery at specific time points to enable apomixis.  相似文献   

3.
Apomixis in hawkweed: Mendel's experimental nemesis   总被引:1,自引:0,他引:1  
Mendel used hawkweeds and other plants to verify the laws of inheritance he discovered using Pisum. Trait segregation was not evident in hawkweeds because many form seeds asexually by apomixis. Meiosis does not occur during female gametophyte formation and the mitotically formed embryo sacs do not require fertilization for seed development. The resulting progeny retain a maternal genotype. Hawkweeds in Hieracium subgenus Pilosella form mitotic embryo sacs by apospory. The initiation of sexual reproduction is required to stimulate apospory in ovules and to promote the function of the dominant locus, LOSS OF APOMEIOSIS, which stimulates the differentiation of somatic aposporous initial (AI) cells near sexually programmed cells. As AI cells undergo nuclear mitosis the sexual pathway terminates. The function of the dominant locus LOSS OF PARTHENOGENESIS in aposporous embryo sacs enables fertilization-independent embryo and endosperm development. Deletion of either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in reversion to sexual development. In these apomicts, sexual reproduction is therefore the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode factors critical for sexual reproduction but might recruit the sexual pathway to enable apomixis. Incomplete functional penetrance of these dominant loci is likely to lead to the generation of rare sexual progeny also derived from these facultative apomicts.  相似文献   

4.
The European hawkweed Hieracium pilosella is a successful invader and a troublesome weed in New Zealand. The systematics of the genus Hieracium is extremely complex and contentious, probably due to recent speciation, hybridization, polyploidy, and diverse reproductive strategies. In the first chloroplast DNA survey of the group, we sequenced 285 plants (including H. pilosella and 12 other species of subgenus Pilosella) from New Zealand and Europe for 900 bp of trnL-trnF. Eleven haplotypes were identified with much sharing among species. Three haplotypes (A, D, G) were found in seven, three, and four species, respectively, but two species (H. lactucella and H. auricula) had single, private haplotypes. Our cpDNA data for subgenus Pilosella are consistent with the group's having incomplete lineage sorting and/or recent reticulate evolution. Six haplotypes were identified in H. pilosella, four of these unique to this taxon in our sample. In New Zealand, haplotype A was common and occurred in plants of different ploidy (i.e., 4×, 5×, 6×), whereas haplotypes C, B, and M were restricted to 4×, 5×, and 6× plants, respectively. The distribution of haplotype variation suggests that some or all of the H. pilosella seeds accidentally introduced into New Zealand probably came from east Europe rather than the United Kingdom and that a minimum of four lineages were introduced. Within New Zealand, hybridization of H. pilosella with a related taxon (probably H. praealtum) has occurred at least three times, involving both obligate sexual tetraploids and facultative apomictic pentaploids of H. pilosella.  相似文献   

5.
Hieracium pilosella: (Asteraceae) was accidentally introduced to New Zealand about 100 years ago. Since then it has become an aggressive weed, and an unexpected degree of genetic and genome size variation has been detected; features that might result from interspecies hybridization. We investigated the possibility that H. pilosella has hybridized with related taxa. Of the four other subgenus Pilosella species introduced to New Zealand, H. praealtum is the most abundant and, on morphological and distributional evidence, most likely to be the other parent. Flow cytometry was used to estimate relative genome size for 156 Hieracium plants collected from the wild. Plants assigned to either parental or hybrid morphotypes were found to comprise tetraploid and pentaploid individuals using genome size measurements, and this was confirmed with direct mitotic chromosome counts for a subset of plants. The haploid DNA content of H. praealtum was approximately 22% larger than that of H. pilosella. Putative hybrids that were tetraploid had mean genome sizes equivalent to two H. pilosella and two H. praealtum haploid chromosome sets, implying they were hybrids arising from the fertilization of two reduced gametes. Similar results were obtained from tetraploid hybrids produced by controlled pollination. However, the majority of field hybrids were pentaploid with a genome size equivalent to four H. pilosella and one H. praealtum haploid chromosome sets. We infer that these are not first-generation hybrids but represent successful backcrossing with H. pilosella and/or hybrid-hybrid crossing, and that sexual tetraploid hybrids have been the parents. We note that populations putatively of H. pilosella often comprise apomictic pentaploid hybrids. Significantly, our data indicate the emergence of sexual hybrids that provide further opportunity for gene flow among taxa in this complex.  相似文献   

6.
Phylogenetic relationships for Hieracium subgen. Pilosella were inferred from chloroplast (trnT-trnL, matK) and nuclear (ITS) sequence data. Chloroplast markers revealed the existence of two divergent haplotype groups within the subgenus that did not correspond to presumed relationships. Furthermore, chloroplast haplotypes of the genera Hispidella and Andryala nested each within one of these groups. In contrast, ITS data were generally in accord with morphology and other evidence and were therefore assumed to reflect the true phylogeny. They revealed a sister relationship between Pilosella and Hispidella and a joint clade of Hieracium subgenera Hieracium and Chionoracium (Stenotheca) while genus Andryala represented a third major lineage of the final ingroup cluster. Detailed analysis of trnT-trnL character state evolution along the ITS tree suggested two intergeneric hybridization events between ancestral lineages that resulted in cytoplasmic transfer (from Hieracium/Chionoracium to Pilosella, and from the introgressed Pilosella lineage to Andryala). These chloroplast capture events, the first of which involved a now extinct haplotype, are the most likely explanation for the observed incongruencies between plastid and nuclear DNA markers.  相似文献   

7.
Hybridisation is a rare event in facultatively apomictic species. We report the recovery of two hybrids from reciprocal crosses between the facultatively apomictic species Hieracium praealtum and H. caespitosum. Both parents were tetraploid (2n=4x=36). H. caespitosum x H. praealtum (CR6) was a hexaploid (2n=6x=54) and an apomict. The increased ploidy number is evidence of a BIII hybrid origin, having arisen from the fusion of a reduced and an unreduced gamete. In contrast, the hybrid recovered from the reciprocal cross H. praealtum x H. caespitosum (RC4) was a tetraploid and therefore probably arose as a BII hybrid fi-em the fusion of two reduced gametes. Further evidence for this is the expression of sexuality in this plant. As apomixis in Hieracium is thought to be determined by a single dominant locus, a sexual plant is consistent with a model of inheritance where this represents the putative homozygous recessive phenotype. The formation of a sexual plant from the hybridisation of apomicts has potentially significant evolutionary implications. The formation of an interspecific BIII hybrid has not previously been recorded.  相似文献   

8.
Until recently, an enormous effort was needed to apply genomic tools to ecological investigations, especially when striving to uncover the functional mechanisms of phenotypic plasticity and the genetic basis of evolutionary adaptation within natural populations. This present study aimed to develop a genomic resource for an organism ideally suited for functional ecology and evolutionary research. Over 760 unique DNA fragments containing microsatellite loci were isolated and characterized from Daphnia to provide more than 500 molecular markers for constructing a genetic map and for localizing chromosomal regions containing genes of ecological importance via quantitative trait locus analyses. Although primarily developed to genotype members of the Daphnia pulex species complex, a significant fraction of these markers is potentially valuable for population genetics and recombination mapping of distantly related species. Over 60% of markers tested in cross‐specific amplifications are possibly conserved within the subgenus Daphnia, whereas 48 and 18% of tested primers are found to amplify subgenus Hyalodaphnia and subgenus Ctenodaphnia DNA, which represents ~140 and 200 million years of evolutionary preservation.  相似文献   

9.
Apospory is a form of gametophytic apomixis in which embryos develop from unreduced embryo sacs derived from aposporous initials formed from nucellar cells of ovules to produce offspring genetically identical to the female plant. Apospory in Pennisetum squamulatum (8X) and Cenchrus ciliaris (4X) is a dominant trait controlled by a physically large, hemizygous, heterochromatic chromosomal block called the apospory-specific genomic region (ASGR). Both apomictic species are polyploid, with genome sizes estimated at 2600 to 3000 Mbp for C. ciliaris and 9400 to 10,300 Mbp for P. squamulatum. A study was conducted to determine whether duplex-specific nuclease (DSN) normalization of DNA from apomictic and sexual genotypes would reduce repetitive sequences and allow bioinformatic analysis to predict sequence contigs derived from the ASGR. DSN libraries from four genotypes were sequenced using Illumina® HiSeq 2000 technology. 39 out of 44 tested sequence characterized amplified region (SCAR) markers from in silico predicted ASGR-specific contigs were mapped to the ASGR in a Pennisetum F1 mapping population. Eighteen SCARs showed apomict-specific amplification in C. ciliaris. The successful mapping of ~90 % of the SCAR markers to the ASGR in the Pennisetum F1 mapping population shows that DSN normalization and Illumina sequencing can be used as an effective strategy for targeted mapping of a physically large locus rich in repetitive sequences, like that of the ASGR.  相似文献   

10.
Cenchrus ciliaris reproduces by apomixis, an asexual mode of reproduction through seeds. Genetic analysis of apomixis in this species revealed that this trait is dominant and that a chromosomal region of more than 11?Mb controls this trait, which is hemizygous, heterochromatic and recombinationally suppressed. A novel F2 mapping population comprising 86 individuals segregating for apomictic and sexual modes of reproduction, generated after crossing a new set of obligate apomictic and sexual parents (IG-96-3108 and IG-96-443), was used in this study to identify a large number of amplified fragment length polymorphism (AFLP) and sequence characterized amplified region (SCAR) markers linked to these traits. Out of 180 polymorphic AFLP markers, 42 and 29 markers associated with apomixis and sexuality were mapped around Apo and Sexual loci, respectively. Markers 20G, 18G and 19G showed close linkage to Apo locus at map distance of only 1.1?cM, while 12FS, 4HS and 12b showed tight linkage to Sexual locus at map distance of 1.7?cM. Markers clustered around Apo and Sexual loci on either side. A large number of recombining AFLP markers were mapped around both loci, indicating a minor role of suppression of recombination. Four anchor markers from earlier studies also clustered around Apo locus, validating the present genetic linkage map. In addition, seven and one SCAR markers closely linked to Apo and Sexual loci were also developed, which could be used for fine mapping of the loci.  相似文献   

11.
We identified microsatellite sequences of potential utility in the house sparrow (Passer domesticus) and assigned their predicted genome locations. These sequences included newly isolated house sparrow loci, which we fully characterized. Many of the newly isolated loci were polymorphic in two other species of Passeridae: Berthelot's pipit Anthus berthelotii and zebra finch Taeniopygia guttata. In total, we identified 179 microsatellite markers that were either isolated directly from, or are of known utility in, the house sparrow. Sixty-seven of these markers were designed from unique sequences that we isolated from a house sparrow genomic library. These new markers were combined with 36 house sparrow markers isolated by other studies and 76 markers isolated from other passerine species but known to be polymorphic in the house sparrow. We utilized sequence homology to assign chromosomal locations for these loci in the assembled zebra finch genome. One hundred and thirty-four loci were assigned to 25 different autosomes and eight loci to the Z chromosome. Examination of the genotypes of known-sex house sparrows for 37 of the new loci revealed a W-linked locus and an additional Z-linked locus. Locus Pdoμ2, previously reported as autosomal, was found to be Z-linked. These loci enable the creation of powerful and cost-effective house sparrow multiplex primer sets for population and parentage studies. They can be used to create a house sparrow linkage map and will aid the identification of quantitative trait loci in passerine species.  相似文献   

12.
Goel S  Chen Z  Conner JA  Akiyama Y  Hanna WW  Ozias-Akins P 《Genetics》2003,163(3):1069-1082
Apomixis is a means of asexual reproduction by which plants produce embryos without meiosis and fertilization; thus the embryo is of clonal, maternal origin. We previously reported molecular markers showing no recombination with the trait for aposporous embryo sac development in Pennisetum squamulatum and Cenchrus ciliaris, and the collective single-dose alleles defined an apospory-specific genomic region (ASGR). Fluorescence in situ hybridization (FISH) was used to confirm that the ASGR is a hemizygous genomic region and to determine its chromosomal position with respect to rDNA loci and centromere repeats. We also documented chromosome transmission from P. squamulatum in several backcrosses (BCs) with P. glaucum using genomic in situ hybridization (GISH). One to three complete P. squamulatum chromosomes were detected in BC(6), but only one of the three hybridized with the ASGR-linked markers. In P. squamulatum and in all BCs examined, the apospory-linked markers were located in the distal region of the short arm of a single chromosome. All alien chromosomes behaved as univalents during meiosis and segregated randomly in BC(3) and later BC generations, but presence of the ASGR-carrier chromosome alone was sufficient to confer apospory. FISH results support our hypotheses that hemizygosity, proximity to centromeric sequences, and chromosome structure may all play a role in low recombination in the ASGR.  相似文献   

13.
P Lichter  P Bray  T Ried  I B Dawid  D C Ward 《Genomics》1992,13(4):999-1007
Ninety-three phage clones identified by hybridization with a C2-H2 zinc finger sequence probe have been grouped into 23 genetic loci. Partial sequencing verified that each locus belonged to the zinc finger family. Oligonucleotide primer pairs were developed from these sequences to serve as STS markers for these loci. One or more clones from each locus was mapped onto human metaphase chromosomes by fluorescence in situ hybridization. Several loci map to identical chromosomal regions, indicating the possible presence of multigene clusters. Zinc finger loci were found to reside predominantly either in telomeric regions or in chromosomal bands known to exhibit chromosome fragility. Chromosome 19 carries a disproportionate fraction (10 of 23) of the mapped zinc finger loci.  相似文献   

14.
Ninety-three phage clones identified by hybridization with a C2---H2 zinc finger sequence probe have been grouped into 23 genetic loci. Partial sequencing verified that each locus belonged to the zinc finger family. Oligonucleotide primer pairs were developed from these sequences to serve as STS markers for these loci. One or more clones from each locus was mapped onto human metaphase chromosomes by fluorescence in situ hybridization. Several loci map to identical chromosomal regions, indicating the possible presence of multigene clusters. Zinc finger loci were found to reside predom nantly either in telomeric regions or in chromosomal bands known to exhibit chromosome fragility. Chromosome 19 carries a disproportionate fraction (10 of 23) of the mapped zinc finger loci.  相似文献   

15.
Lophopyrum elongatum, a close relative of wheat, provides a source of novel genes for wheat improvement. Molecular markers were developed to monitor the introgression of L. elongatum chromosome segments into hexaploid wheat. Existing simple sequence repeats (SSRs) derived from genomic libraries were initially screened for detecting L. elongatum loci in wheat, but only 6 of the 163 markers tested were successful. To increase detection of L. elongatum specific loci, 165 SSRs were identified from wheat expressed sequence tags (ESTs), where their chromosomal positions in wheat were known from deletion bin mapping. Detailed sequence analysis identified 41 SSRs within this group as potentially superior in their ability to detect L. elongatum loci. BLASTN alignments were used to position primers within regions of the ESTs that have sequence conservation with at least 1 similar EST from another cereal species. The targeting of primers in this manner enabled 14 L. elongatum markers from 41 wheat ESTs to be identified, whereas only 2 from 124 primers designed in random positions flanking SSRs detected L. elongatum loci. Addition and ditelosomic lines were used to assign all 22 markers to specific chromosome locations in L. elongatum. Nine of these SSR markers were assigned to homoeologous chromosome locations based on their similar position in hexaploid wheat. The remaining markers mapped to other L. elongatum chromosomes indicating a degree of chromosome rearrangements, paralogous sequences and (or) sequence variation between the 2 species. The EST-SSR markers were also used to screen other wheatgrass species indicating further chromosome rearrangements and (or) sequence variation between wheatgrass genomes. This study details methodologies for the generation of SSRs for detecting L. elongatum loci.  相似文献   

16.
Expressed sequence tags (ESTs) are a valuable source of molecular markers. To enhance the resolution of an existing linkage map and to identify putative functional polymorphic gene loci in hexaploid wheat (Triticum aestivum L.), over 260,000 ESTs from 5 different grass species were analyzed and 5418 SSR-containing sequences were identified. Using sequence similarity analysis, 156 cross-species superclusters and 138 singletons were used to develop primer pairs, which were then tested on the genomic DNA of barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and wheat. Three-hundred sixty-eight primer pairs produced PCR amplicons from at least one species and 227 primer pairs amplified DNA from two or more species. EST-SSR sequences containing dinucleotide motifs were significantly more polymorphic (74%) than those containing trinucleotides (56%), and polymorphism was similar for markers in both coding and 5' untranslated (UTR) regions. Out of 112 EST-SSR markers, 90 identified 149 loci that were integrated into a reference wheat genetic map. These loci were distributed on 19 of the 21 wheat chromosomes and were clustered in the distal chromosomal regions. Multiple-loci were detected by 39% of the primer pairs. Of the 90 mapped ESTs, putative functions for 22 were identified using BLASTX queries. In addition, 80 EST-SSR markers (104 loci) were located to chromosomes using nullisomic-tetrasomic lines. The enhanced map from this study provides a basis for comparative mapping using orthologous and PCR-based markers and for identification of expressed genes possibly affecting important traits in wheat.  相似文献   

17.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

18.
A plant sociological survey of tall-tussock grasslands in the Mackenzie country was repeated after an interval of 26-28 years. Changes in physiognomy of the grasslands which have been inferred from earlier studies have been found to be continuing on many sites. A noteworthy feature of most sites has been a reduction in number of indigenous species found. An increase in abundance of Hieracium pilosella or H. praealtum has occurred at most sites. About 140 species and 9 variables from 53 sites were interrelated in a direct unimodal ordination (canonical correspondence analysis). Ordination results of the 1960s and the 1989 data were compared and interpreted with respect to spread of Hieracium pilosella and H. praealtum. The dynamics of Hieracium infestation was studied within changing community structure. A distinct trend is demonstrated of increasing infestation with increasing grassland degradation.  相似文献   

19.
An apomictic mode of reproduction known as apospory is displayed by most buffelgrass (Cenchrus ciliaris) genotypes, but rare sexual individuals have been identified. Previously, intraspecific crosses between sexual and aposporous genotypes allowed linkage to be discovered between the aposporous mode of reproduction and nine molecular markers that had been isolated from an aposporous relative, Pennisetum squamulatum. This region was described as the apospory-specific genomic region (ASGR). We now show an ideogram of the chromosome complement for aposporous tetraploid buffelgrass accession B-12-9 including the ASGR-carrier chromosome. The ASGR-carrier chromosome has a region of hemizygosity, as determined by in situ hybridization of BAC clones and unique morphological characteristics when compared with other chromosomes in the genome. In spite of its unique morphology, the ASGR-carrier chromosome could be identified as one of the chromosomes of a meiosis I quadrivalent. A similar partially hemizygous segment was also detected in the ASGR-carrier chromosome of the aposporous buffelgrass genotype, Higgins, but not in the sexual accession B-2S. Two non-recombining BACs linked to apospory were physically mapped on a highly condensed chromatin region of the short arm of B-12-9, and the distance between the BACs was estimated to be ∼11 Mbp, a distance similar to what previously has been shown in P. squamulatum. The short arm of the ASGR-carrier chromosome was highly condensed at pachytene and extended only 1.7–2.7 fold that of mitotic chromosomes. Low recombination in the ASGR may partially be due to its localization in heterochromatin.  相似文献   

20.
Tetraploid Paspalum notatum (bahiagrass) is a valuable forage grass with aposporous apomictic reproduction. In a previous study, we showed that apospory in bahiagrass is under the control of a single dominant gene with a distorted segregation ratio. The objective of this work was to identify molecular markers linked to apospory in tetraploid P. notatum and establish a preliminary syntenic relationship with the genomic region associated with apospory in P. simplex. A F1 population of 290 individuals, segregating for apospory, was generated after crossing a completely sexual plant (Q4188) with a natural aposporous apomictic plant (Q4117). The whole progeny was classified as sexual or aposporous by embryo sacs analysis. A bulked segregant analysis was carried out to identify molecular markers co-segregating with apospory. Four hundred RAPD primers, 30 AFLP primers combinations and 85 RFLP clones were screened using DNA from both parental genotypes and aposporous and sexual bulks. Linkage analysis was performed with cytological and genetic information from the complete progeny. Cytoembryological analysis showed 219 sexual and 71 aposporous F1 individuals. Seven different molecular markers (2 RAPD, 4 AFLP and 1 RFLP) were found to be completely linked to apospory. The RFLP probe C1069, mapping to the telomeric region of the long arm of rice chromosome 12, was one of the molecular markers completely linked to apospory in P. notatum. This marker had been previously associated with apospory in P. simplex. A preliminary map of the chromosome region carrying the apospory locus was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号