首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study describes a simple chromatographic method for the simultaneous analyses of phosphatidylcholine (PC) and its hydrolytic degradation products: lysophosphatidylcholine (LPC) and free fatty acids (FFA). Quantitative determination of PC, LPC, and FFA is essential in order to assure safety and to accurately assess the shelf life of phospholipid-containing products. A single-run normal-phase high-performance liquid chromatography (HPLC) with evaporative light scattering detector has been developed. The method utilizes an Allsphere silica analytical column and a gradient elution with mobile phases consisting of chloroform: chloroform–methanol (70:30%, v/v) and chloroform–methanol–water–ammonia (45:45:9.5:0.5%, v/v/v/v). The method adequately resolves PC, LPC, and FFA within a run time of 25 min. The quantitative analysis of PC and LPC has been achieved with external standard method. The free fatty acids were analyzed as a group using linoleic acid as representative standard. Linear calibration curves were obtained for PC (1.64–16.3 μg, r2 = 0.9991) and LPC (0.6–5.0 μg, r2 = 0.9966), while a logarithmic calibration curve was obtained for linoleic acid (1.1–5.8 μg, r2 = 0.9967). The detection and quantification limits of LPC and FFA were 0.04 and 0.1 μg, respectively. As a means of validating the applicability of the assay to pharmaceutical products, PC liposome was subjected to alkaline hydrolytic degradation. Quantitative HPLC analysis showed that 97% of the total mass balance for PC could be accounted for in liposome formulation. The overall results show that the HPLC method could be a useful tool for chromatographic analysis, stability studies, and formulation characterization of phospholipid-based pharmaceuticals.KEY WORDS: evaporative light scattering detection, free fatty acid, lysophosphatidylcholine, phosphatidylcholine  相似文献   

3.
Galectin-1 (gal-1), an endogenous β-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-δ (PKCδ) inhibitor rottlerin (10 μM), and with the specific PKCθ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCδ and PKCθ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation.  相似文献   

4.
P53 inactivation is often observed in Burkitt''s lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection.  相似文献   

5.
6.
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.  相似文献   

7.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

8.
Benzo[a]pyrene (BaP) is a ubiquitously distributed environmental pollutant that induces deoxyribonucleic acid (DNA) damage. The inducible heat shock protein (HspA1A) can function as a molecular chaperone; however, its role in DNA repair remains largely unknown. In the present study, human bronchial epithelial cells (16HBE) stably transfected with plasmids carrying HspA1A gene or shRNAs against HspA1A were treated with BaP. DNA damage levels of the cells were evaluated by comet assay. Results suggest that HspA1A could protect cells against DNA damage and facilitate the decrease of DNA damage levels during the first 2 h of DNA repair. DNA repair capacity (DRC) of Benzo(a)pyrene diol epoxide (BPDE)-DNA adducts was evaluated by host cell reactivation assay in the stable 16HBE cells transfected with luciferase reporter vector PCMVluc pretreated with BPDE. Compared with control cells, cells overexpressing HspA1A showed higher DRC (p < 0.01 at 10 μM BPDE and p < 0.05 at 20 μM BPDE, respectively), while knockdown of HspA1A inhibited DNA repair (p < 0.05 at 10 μM BPDE). Moreover, casein kinase 2 (CK2) was shown to interact with HspA1A by mass spectrometry and co-immunoprecipitation assays. The two proteins were co-localized in the cell nucleus and perinuclear region during DNA repair, and were identified by confocal laser scanning microscope. In addition, cells overexpressing HspA1A showed an increased CK2 activity after BaP treatment compared with control cells (p < 0.01). Our results suggest that HspA1A facilitates DNA repair after BaP treatment. HspA1A also interacts with CK2 and enhances the kinase activities of CK2 during DNA repair.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-013-0454-7) contains supplementary material, which is available to authorized users.  相似文献   

9.
Curcuma comosa has long been used as a gynecological medicine. Several diarylheptanoids have been purified from this plant, and their pharmacological effects were proven. However, there is no information about the absorption of C. comosa components to support the formulation usage. In the present study, C. comosa hexane extract and the mixture of its two major compounds, (4E,6E)-1,7-diphenylhepta-4,6-dien-3-ol (DA1) and (6E)-1,7-diphenylhept-6-en-3-ol (DA2), were formulated into nanoemulsions. The physical properties of the nanoemulsions and the in situ intestinal absorptions of DA1 and DA2 were evaluated. The results demonstrated the mean particle sizes at 0.207 ± 0.001 and 0.408 ± 0.014 μm, and the zeta potential at −14.57 ± 0.85 and −10.47 ± 0.32 mV for C. comosa nanoemulsion (C.c-Nano) and mixture of diarlylheptanoid nanoemulsions (DA-Nano), respectively. The entrapments of DA1 and DA2 were 76.61% and 75.41%, and 71.91% and 71.63% for C.c-Nano and DA-Nano, respectively. The drug loading ratios of DA1 and DA2 were 351.47 and 614.53 μg/mg, and 59.48 and 126.72 μg/mg for C.c-Nano and DA-Nano. The intestinal absorption rates of DA1 and DA2 were 0.329 ± 0.015 and 0.519 ± 0.026 μg/min/cm2 in C.c-Nano, and 0.380 ± 0.006 and 0.428 ± 0.036 μg/min/cm2 in DA-Nano, which were five to ten times faster than those in oil. In conclusion, the formulation in nanoemulsion forms obviously increased the intestinal absorption rate of diarylheptanoids.KEY WORDS: Curcuma comosa, diarylheptanoids, intestinal absorption, nanoemulsion, phytoestrogen  相似文献   

10.
The present study reports an efficient in vitro micropropagation protocol for a medicinally important tree, Terminalia bellerica Roxb. from nodal segments of a 30 years old tree. Nodal segments taken from the mature tree in March-April and cultured on half strength MS medium gave the best shoot bud proliferation response. Combinations of serial transfer technique (ST) and incorporation of antioxidants (AO) [polyvinylpyrrolidone, PVP (50 mg l−1) + ascorbic acid (100 mg l−1) + citric acid (10 mg l−1)] in the culture medium aided to minimize browning and improve explant survival during shoot bud induction. Highest multiplication of shoots was achieved on medium supplemented with 6-benzyladenine (BA, 8.8 μM) and α-naphthalene acetic acid (NAA, 2.6 μM) in addition to antioxidants. Shoot elongation was obtained on MS medium containing BA (4.4 μM) + phloroglucinol (PG, 3.9 μM). Elongated shoots were transferred to half strength MS medium containing indole-3-butyric acid (IBA, 2.5 μM) for root development. The acclimatization of plantlets was carried out under greenhouse conditions. The genetic fidelity of the regenerated plants was checked using inter simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. Comparison of the bands among the regenerants and mother plant confirmed true-to-type clonal plants.  相似文献   

11.

Background

TP53 mutations have been associated with resistance to anthracyclines but not to taxanes in breast cancer patients. The MDM2 promoter single nucleotide polymorphism (SNP) T309G increases MDM2 activity and may reduce wild-type p53 protein activity. Here, we explored the predictive and prognostic value of TP53 and CHEK2 mutation status together with MDM2 SNP309 genotype in stage III breast cancer patients receiving paclitaxel or epirubicin monotherapy.

Experimental Design

Each patient was randomly assigned to treatment with epirubicin 90 mg/m2 (n = 109) or paclitaxel 200 mg/m2 (n = 114) every 3rd week as monotherapy for 4–6 cycles. Patients obtaining a suboptimal response on first-line treatment requiring further chemotherapy received the opposite regimen. Time from last patient inclusion to follow-up censoring was 69 months. Each patient had snap-frozen tumor tissue specimens collected prior to commencing chemotherapy.

Principal Findings

While TP53 and CHEK2 mutations predicted resistance to epirubicin, MDM2 status did not. Neither TP53/CHEK2 mutations nor MDM2 status was associated with paclitaxel response. Remarkably, TP53 mutations (p = 0.007) but also MDM2 309TG/GG genotype status (p = 0.012) were associated with a poor disease-specific survival among patients having paclitaxel but not patients having epirubicin first-line. The effect of MDM2 status was observed among individuals harbouring wild-type TP53 (p = 0.039) but not among individuals with TP53 mutated tumors (p>0.5).

Conclusion

TP53 and CHEK2 mutations were associated with lack of response to epirubicin monotherapy. In contrast, TP53 mutations and MDM2 309G allele status conferred poor disease-specific survival among patients treated with primary paclitaxel but not epirubicin monotherapy.  相似文献   

12.
Resveratrol is a natural compound that has been intensely studied due to its role in cancer prevention and potential as an anti-cancer therapy. Its effects include induction of apoptosis and senescence-like growth inhibition. Here, we report that two cancer cell lines (U-2 OS and A549) differ significantly in their molecular responses to resveratrol. Specifically, in U-2 OS cells, the activation of the p53 pathway is attenuated when compared to the activation in A549 cells. This attenuation is accompanied by a point mutation (458: CGA→TGA) in the PPM1D gene and overexpression of the encoded protein, which is a negative regulator of p53. Experimentally induced knockdown of PPM1D in U-2 OS cells resulted in slightly increased activation of the p53 pathway, most clearly visible as stronger phosphorylation of p53 Ser37. When treated with nutlin-3a, a non-genotoxic activator of p53, U-2 OS and A549 cells both responded with substantial activation of the p53 pathway. Nutlin-3a improved the clonogenic survival of both cell lines treated with resveratrol. This improvement was associated with lower activation of DNA-damage signaling (phosphorylation of ATM, CHK2, and histone H2AX) and higher accumulation of cells in the G1 phase of the cell cycle. Thus, the hyperactivation of p53 by nutlin-3a helps to preserve the replicative potential of cells exposed to resveratrol.  相似文献   

13.
The pro-apoptotic BH3-only protein, BIK, is widely expressed and although many critical functions in developmental or stress-induced death have been ascribed to this protein, mice lacking Bik display no overt abnormalities. It has been postulated that Bik can serve as a tumour suppressor, on the basis that its deficiency and loss of apoptotic function have been reported in many human cancers, including lymphoid malignancies. Evasion of apoptosis is a major factor contributing to c-Myc-induced tumour development, but despite this, we found that Bik deficiency did not accelerate Eμ-Myc-induced lymphomagenesis. Co-operation between BIK and NOXA, another BH3-only protein, has been previously described, and was attributed to their complementary binding specificities to distinct subsets of pro-survival BCL-2 family proteins. Nevertheless, combined deficiency of Bik and Noxa did not alter the onset of Eμ-Myc transgene induced lymphoma development. Moreover, although p53-mediated induction of Bik has been reported, neither Eμ-Myc/Bik−/− nor Eμ-Myc/Bik−/−Noxa−/− lymphomas were more resistant than control Eμ-Myc lymphomas to killing by DNA damaging drugs, either in vitro or in vivo. These results suggest that Bik, even in combination with Noxa, is not a potent suppressor of c-Myc-driven tumourigenesis or critical for chemotherapeutic drug-induced killing of Myc-driven tumours.  相似文献   

14.
Saffron is an important spice derived from the stigmas of Crocus sativus, a species belonging to the family Iridaceae. Due to its triploid nature it is sterile and is not able to set seeds, so it is propagated only by corms. The natural propagation rate of most geophytes including saffron is relatively low. An in vitro multiplication technique like micropropagation has been used for the propagation of saffron. In the present study, various explants were cultured on different nutrient media supplemented with various concentrations of plant growth regulators to standardize the best media combination for obtaining optimum response with respect to corm production and development of Stigma Like Structures (SLS). Highest response (60 %) was observed with half ovaries on G-5 media supplemented with 27 μM NAA and 44.4 μM BA followed by 55 % on LS media with 27 μM NAA and 44.4 μM BA. Maximum size (1.3 g) of microcorms were obtained from apical buds on the LS media supplemented with 21.6 μM NAA and 22.2 μM. Stigma Like Structures were developed from half ovary explants both directly and indirectly. Maximum number (120 indirectly and 20 directly) and size (5.2 cm) of SLS were obtained in G-5 medium supplemented with 27 μM NAA and 44.4 μM BA followed by 100 indirectly and 20 directly and 4.5 cm long on LS medium supplemented with 27 μM NAA and 44.4 μM BA.  相似文献   

15.
It is known that the presence of calcium ions (Ca2 + ) is necessary for the enterobacterial virus ΦX174 to inject its DNA into the host cell, and that some mutations in the major capsid proteins lead to better survivability at higher temperatures. Our goal in the current study is to determine the physical changes in both the wild-type and mutant virus due to the binding of Ca2 + . Thus, we performed molecular dynamics simulations of the ΦX174 major capsid protein complex with and without Ca2 +  bound. Our results show that binding of Ca2 +  leads to energetic and dynamical changes in the virus proteins. In particular, the results suggest that binding of Ca2 +  is energetically favorable and that the mutation leads to increased fluctuations of the protein complex (especially with the calcium ions bound to the complex), which may increase the rate of genome packaging and ejection for ΦX174.  相似文献   

16.

Background

Chemoresistance is the main obstacle to cure in most malignant diseases. Anthracyclines are among the main drugs used for breast cancer therapy and in many other malignant conditions. Single parameter analysis or global gene expression profiles have failed to identify mechanisms causing in vivo resistance to anthracyclines. While we previously found TP53 mutations in the L2/L3 domains to be associated with drug resistance, some tumors harboring wild-type TP53 were also therapy resistant. The aim of this study was; 1) To explore alterations in the TP53 gene with respect to resistance to a regular dose epirubicin regimen (90 mg/m2 every 3 week) in patients with primary, locally advanced breast cancer; 2) Identify critical mechanisms activating p53 in response to DNA damage in breast cancer; 3) Evaluate in vitro function of Chk2 and p14 proteins corresponding to identified mutations in the CHEK2 and p14(ARF) genes; and 4) Explore potential CHEK2 or p14(ARF) germline mutations with respect to family cancer incidence.

Methods and Findings

Snap-frozen biopsies from 109 patients collected prior to epirubicin (as preoperative therapy were investigated for TP53, CHEK2 and p14(ARF) mutations by sequencing the coding region and p14(ARF) promoter methylations. TP53 mutastions were associated with chemoresistance, defined as progressive disease on therapy (p = 0.0358; p = 0.0136 for mutations affecting p53 loop domains L2/L3). Germline CHEK2 mutations (n = 3) were associated with therapy resistance (p = 0.0226). Combined, mutations affecting either CHEK2 or TP53 strongly predicted therapy resistance (p = 0.0101; TP53 mutations restricted to the L2/L3 domains: p = 0.0032). Two patients progressing on therapy harbored the CHEK2 mutation, Arg95Ter, completely abrogating Chk2 protein dimerization and kinase activity. One patient (Epi132) revealed family cancer occurrence resembling families harboring CHEK2 mutations in general, the other patient (epi203) was non-conclusive. No mutation or promoter hypermethylation in p14(ARF) were detected.

Conclusion

This study is the first reporting an association between CHEK2 mutations and therapy resistance in human cancers and to document mutations in two genes acting direct up/down-stream to each other to cause therapy failure, emphasizing the need to investigate functional cascades in future studies.  相似文献   

17.
SAR405838 is a potent and specific MDM2 inhibitor currently being evaluated in Phase I clinical trials for the treatment of human cancer. Using the SJSA-1 osteosarcoma cell line which harbors an amplified MDM2 gene and wild-type p53, we have investigated the acquired resistance mechanisms both in vitro and in vivo to SAR405838. Treatment of SJSA-1 cells with SAR405838 in vitro leads to dose-dependent cell growth inhibition, cell cycle arrest and robust apoptosis. However, prolonged treatment of SJSA-1 cells in vitro with SAR405838 results in profound acquired resistance to the drug. Analysis of in vitro-derived resistant cell lines showed that p53 is mutated in the DNA binding domain and can no longer be activated by SAR405838. Treatment of the parental SJSA-1 xenograft tumors with SAR405838 in mice yields rapid tumor regression but the tumors eventually regrow. Culturing the regrown tumors established a number of sublines, which showed only modest (3–5 times) loss of sensitivity to SAR405838 in vitro. Sequencing of the p53 showed that it retains its wild-type status in these in vivo sublines, with the exception of one subline, which harbors a single heterozygous C176F p53 mutation. Using xenograft models of two in vivo derived sublines, which has either wild-type p53 or p53 containing a single heterozygous C176F mutation, we showed that while SAR405838 effectively achieves partial tumor regression in these models, it no longer induces complete tumor regression and tumors resume growth once the treatment is stopped. Harvesting and culturing tumors obtained from a prolonged treatment with SAR405838 in mice established additional in vivo sublines, which all contain a single heterozygous C176F mutation with no additional p53 mutation detected. Interestingly, SAR405838 can still effectively activate p53 in all sublines containing a single heterozygous C176F mutation, with a moderately reduced potency as compared to that in the parental cell line. Consistently, SAR405838 is 3–5 times less effective in all the in vivo derived sublines containing a single heterozygous C176F p53 mutation than in the SJSA-1 parental cell line in assays of cell growth and apoptosis. Computational modeling suggested that a p53 tetramer containing two wild-type p53 molecules and two C176F mutated molecules can maintain the structural stability and interactions with DNA by formation of additional hydrophobic and cation-π interactions which compensate for the loss of sulphur-zinc coordination. Our data thus show that SJSA-1 tumor cells acquire very different levels of resistance in vitro and in vivo to the MDM2 inhibitor SAR405838. Our present study may have a significant implication for the investigation of resistant mechanisms for other classes of anticancer drugs.  相似文献   

18.
The standard genetic code is used by most living organisms, yet deviations have been observed in many genomes, suggesting that the genetic code has been evolving. In certain yeast mitochondria, CUN codons are reassigned from leucine to threonine, which requires an unusual tRNAThr with an enlarged 8-nt anticodon loop (). To trace its evolutionary origin we performed a comprehensive phylogenetic analysis which revealed that evolved from yeast mitochondrial tRNAHis. To understand this tRNA identity change, we performed mutational and biochemical experiments. We show that Saccharomyces cerevisiae mitochondrial threonyl-tRNA synthetase (MST1) could attach threonine to both and the regular , but not to the wild-type tRNAHis. A loss of the first nucleotide (G−1) in tRNAHis converts it to a substrate for MST1 with a Km value (0.7 μM) comparable to that of (0.3 μM), and addition of G−1 to allows efficient histidylation by histidyl-tRNA synthetase. We also show that MST1 from Candida albicans, a yeast in which CUN codons remain assigned to leucine, could not threonylate , suggesting that MST1 has coevolved with . Our work provides the first clear example of a recent recoding event caused by alloacceptor tRNA gene recruitment.  相似文献   

19.
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Ablμ/μ mice. When injected with cisplatin, we found similar levels of platinum in the Abl+/+ and the Ablμ/μ kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Ablμ/μ kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl+/+ but not in the Ablμ/μ kidneys. The residual apoptosis in the Ablμ/μ mice was not further reduced in the Ablμ/μ; p53−/− double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl+/+ and the Ablμ/μ kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis.  相似文献   

20.
Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号