首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aberrant DNA methylation of regulatory sequences is a well-documented mechanism of functional deletion of genes with anti-tumourigenic properties including microRNAs. This review discusses the publications describing aberrant methylation of microRNA genes in human breast cancer cells. Among the anti-tumourigenic properties of epigenetically inactivated microRNA genes, the inhibition of proliferation and of epithelial-to-mesenchymal transition (EMT) are the best studied. Several studies are conceptually very interesting and present a comprehensive functional characterization of anti-tumorigenic microRNAs. The link between microRNA expression and gene methylation is not addressed directly by all studies and a number of studies are limited in their strength by not including primary breast cancer specimens or by analysing very small sets of primary human specimens. The publications cover a wide range of DNA methylation detection techniques, often making direct comparison of results challenging. Despite the identification and thorough characterization of many interesting candidates and functionally important microRNA genes affected by DNA methylation, the translation of microRNA gene methylation as a new biomarker into the daily routine practice has not yet worked out.  相似文献   

2.
β-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. 15N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprising β-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that β-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.  相似文献   

3.
4.
The MUC genes encode epithelial mucins. Eight different human genes have been well characterized, and two others identified more recently. Among them, a family of four genes, expressed in the respiratory and digestive tracts, is clustered to chromosome 11p15.5; and these genes encode gel-forming mucins which are structurally related to the superfamily of cystine-knot growth factors. A second group is composed of three independent genes encoding various isoforms of mucins including membrane-bound mucins associated to carcinomas. In this second group, MUC3 and MUC4 encode large apomucins containing EGF-like domains.  相似文献   

5.
Protein–protein interactions (PPIs) describe the direct physical contact of two proteins that usually results in specific biological functions or regulatory processes. The characterization and study of PPIs through the investigation of their pattern and principle have remained a question in biological studies. Various experimental and computational methods have been used for PPI studies, but most of them are based on the sequence similarity with current validated PPI participators or cellular localization patterns. Most methods ignore the fact that PPIs are defined by their specific biological functions. In this study, we constructed a novel rule-based computational method using gene ontology and KEGG pathway annotation of PPI participators that correspond to the complicated biological effects of PPIs. Our newly presented computational method identified a group of biological functions that are tightly associated with PPIs and provided a new function-based tool for PPI studies in a rule manner.  相似文献   

6.
The previous published data on the association between X-ray repair cross-complementing group 3 (XRCC3) T241M, A4541G, and A17893G polymorphisms and breast cancer risk remained controversial. Hence, we performed a meta-analysis to investigate the association between breast cancer and XRCC3 T241M (21,910 cases and 23,961 controls), A4541G (9,633 cases and 10,994 controls), and A17893G polymorphisms (10,761 cases and 12,235 controls) in different inheritance models. When all the eligible studies were pooled into the meta-analysis of XRCC3 T241M polymorphism, significantly increased risk of breast cancer was observed in recessive model (odds' ratio [OR] = 1.10, 95% confidence interval [CI] = 1.041.16) and in additive model (OR = 1.10, 95% CI = 1.031.16). No significant association was found between A4541G polymorphism and breast cancer risk. When all the eligible studies were pooled into the meta-analysis of XRCC3 A17893G polymorphism, no significant association was found in any genetic model. Additionally, when one study was deleted in the sensitive analysis, the results of XRCC3 A17893G were changed in the additive model (OR = 0.90, 95% CI = 0.82–0.99) and dominant model (OR = 0.94, 95% CI = 0.89–0.99). In summary, this meta-analysis indicates that T241M polymorphism show an increased breast cancer risk and A17893G polymorphism may be associated with decreased breast cancer risk. A study with the larger sample size is needed to further evaluated gene-environment interaction on XRCC3 T241M, A4541G, and A17893G polymorphisms and breast cancer risk.  相似文献   

7.
ObjectivesTo investigate in silico the presence of nucleotide sequence complementarity between the RNA genome of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and human non-coding (nc)RNA genes.MethodsThe FASTA sequence (NC_045512.2) of each of the 11 SARS-CoV-2 isolate Wuhan-Hu-1 genes was retrieved from NCBI.nlm.nih.gov/gene and the Ensembl.org library interrogated for any base-pair match with human ncRNA genes. SARS-CoV-2 gene-matched human ncRNAs were screened for functional activity using bioinformatic analysis. Finally, associations between identified ncRNAs and human diseases were searched in GWAS databases.ResultsA total of 252 matches were found between the nucleotide sequence of SARS-CoV-2 genes and human ncRNAs. With the exception of two small nuclear RNAs, all of them were long non-coding (lnc)RNAs expressed mainly in testis and central nervous system under physiological conditions. The percentage of alignment ranged from 91.30% to 100% with a mean nucleotide alignment length of 17.5 ± 2.4. Thirty-three (13.09%) of them contained predicted R-loop forming sequences, but none of these intersected the complementary sequences of SARS-CoV-2. However, in 31 cases matches fell on ncRNA regulatory sites, whose adjacent coding genes are mostly involved in cancer, immunological and neurological pathways. Similarly, several polymorphic variants of detected non-coding genes have been associated with neuropsychiatric and proliferative disorders.ConclusionThis pivotal in silico study shows that SARS-CoV-2 genes have Watson-Crick nucleotide complementarity to human ncRNA sequences, potentially disrupting ncRNA epigenetic control of target genes. It remains to be elucidated whether this could result in the development of human disease in the long term.  相似文献   

8.
9.
10.
Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances.  相似文献   

11.
In an initial data-mining effort, the draft human genome was searched to find paralogs of known tumor suppressor genes, and for gene arrangements, which are typical of oncogenes, in cancer cells. The results were disappointing, indicating that although knowledge of the human genome will undoubtedly be of great help, other approaches to identify new oncogenes are needed.  相似文献   

12.
Much progress has been made in understanding the mechanism of bladder cancer (BC) progression. Protein kinase C-α (PKCα) is overexpressed in many kinds of cancers. Additionally, PKCα is considered an oncogene that regulates proliferation, invasion, migration, apoptosis and cell cycle in multiple cancers. However, the mechanism underlying how these cellular processes are regulated by PKCα remains unknown. In the present study, we used PKCα siRNA to knock down PKCα gene expression and found that down-regulation of PKCα could significantly inhibit cell proliferation, migration and invasion and induce apoptosis and G1/S cell cycle arrest in vitro. Overexpression of PKCα promotes tumour growth in vivo. We applied cDNA microarray technology to detect the differential gene expression in J82 cells with PKCα knockdown and found that five key genes (BIRC2, BIRC3, CDK4, TRAF1 and BMP4) were involved in proliferation and apoptosis according to GO analysis and pathway analyses. Correlation analysis revealed a moderate positive correlation between PKCα expression and the expression of five downstream genes. BIRC2 and BIRC3 inhibit apoptosis, whereas CDK4, TRAF1 and BMP4 promote proliferation. Essentially, all five of these target genes participated in proliferation, and apoptosis was regulated by PKCα via the NF-kB signalling pathway.  相似文献   

13.
Under the framework of adaptive Human–Machine (HM) systems, it has been proposed that human operators’ task level should be dynamically adjusted according to his/her functional state. The construction of models that can reliably predict the operator functional state (OFS) becomes critical to accomplish such adjustments. However, most of the existing models that evaluate the current OFS by using operators’ current physiological data are static and are of no real predictive capability. Thus, when they are used in adaptive HM systems, the resultant task allocation between operators and machines would be time-delayed. To overcome this problem, a one-step-ahead predictive model concept for OFS computation is proposed. Meanwhile, multiple fuzzy models are developed by using the Wang–Mendel method. These models are able to increase the accuracy of the OFS breakdown prediction, as well as to reduce the model training time. In addition, an adaptive task allocation strategy is designed to validate the proposed models. The results demonstrate that, compared to the conventional HM systems, a 6.7% OFS increment and a 57.1% OFS breakdown decrement can be obtained in the multiple models based adaptive HM systems. The multiple predictive models and the adaptive task allocation strategy would pave the way for future implementations of real-time adaptive HM systems.  相似文献   

14.
The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial–mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi-omics data to develop a risk stratification model anchored on EMT-associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT-associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high- and low-risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High-risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non-coding RNA PVT1 and the EMT-associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi-omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.  相似文献   

15.
Summary Detailed restriction enzyme analysis of the DNA from a Chinese female showed that one of her chromosomes had a >17.5 kb deletion of DNA, including the , 2, and 1 globin genes, which is present in many Southeast Asians with an -thalassemia-1 chromosome. Her normal chromosome had the expected cluster of -like globin genes (5----2-1-3), but the segment of DNA between the two globin genes was elongated by some 0.5–0.7 kb. Analyses of various restriction sites suggested that this normal variant of the human globin gene complex is due to a crossover between a normal chromosome with () and a chromosome with an -thalassemia-2 (–3.7) and an -21-hybrid gene.  相似文献   

16.
Summary Southern blotting and DNA sequencing after polymerase chain reaction (PCR) amplification provide evidence for the frequent occurrence (in 7 out of 24 chromosomes) of a short conversion GA in the 3 end of the human fetal A globin gene. This short conversion is characterized by the presence, 3 nucleotides downstream from the termination codon of the A gene, of the TCAC sequence that is normally present at the equivalent position at the 3 end of the G gene; it is therefore identical to a conversion already described. Interestingly, we have found that this conversion is associated with the presence of theHindIII polymorphic restriction site in the A IVS2, occuppying an equivalent position in both the G and A genes. Our observations strengthen the hypothesis that the presence of the HindIII polymorphic restriction site in A IVS2 and the presence of the sequence TCAC at the 3 end of the A gene might be the result of a single conversion event.  相似文献   

17.
Summary The DNA base sequences of the entire chimpanzee 1 globin gene and an additional 1 kb of DNA flanking both the human and chimpanzee genes have been determined. Whereas the human 1 gene contains a termination codon in the sixth position, the chimpanzee gene appears to be functional. This finding confirms Proudfoot et al.'s suggestion that the human 1 gene was recently inactivated. Like the corresponding human 1 and 2 genes, the first and second introns of the chimpanzee 1 gene are occupied largely by tandem repeats of short oligonucleotides. These tandem repeats have undergone several rearrangements since the divergence of the human and chimpanzee 1 genes.  相似文献   

18.
19.
20.
 The degree of polymorphism present in 5′ untranslated regions of stilbene synthase (StSy)-like loci was assessed. A ligation-mediated polymerase chain reaction (LM-PCR) cloning strategy was adopted to isolate sequences located immediately upstream of StSy coding regions. Among several clones, 13 randomly chosen fragments were analyzed at the sequence level. Four of the analyzed fragments appeared of particular interest. Two carried sequences reminiscent of micro-satellites, while the remaining fragments contained direct repeats. Oligonucleotides constructed against the specific DNA sequence of these clones disclosed a complex banding pattern when used in polymerase chain reaction (PCR)-analysis of 22 ancient varieties of grapevine. A total of 40 polymorphic bands could be identified and used to calculate coefficients of genetic similarity (GS) between varieties. GS values were used in cluster analysis to differentiate the 22 varieties. The data obtained are in good agreement with available information concerning the relationships between the varieties considered. This suggests the use of the method we have developed in fingerprinting studies of Vitis vinifera germ plasma. Received: 11 April 1996 / Accepted: 14 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号