首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The Arabidopsis thaliana proteins suppressor of phytochrome A-105 1 (SPA1), SPA3, and SPA4 of the four-member SPA1 protein family have been shown to repress photomorphogenesis in light-grown seedlings. Here, we demonstrate that spa quadruple mutant seedlings with defects in SPA1, SPA2, SPA3, and SPA4 undergo strong constitutive photomorphogenesis in the dark. Consistent with this finding, adult spa quadruple mutants are extremely small and dwarfed. These extreme phenotypes are only observed when all SPA genes are mutated, indicating functional redundancy among SPA genes. Differential contributions of individual SPA genes were revealed by analysis of spa double and triple mutant genotypes. SPA1 and SPA2 predominate in dark-grown seedlings, whereas SPA3 and SPA4 prevalently regulate the elongation growth in adult plants. Further analysis of SPA2 function indicated that SPA2 is a potent repressor of photomorphogenesis only in the dark but not in the light. The SPA2 protein is constitutively nuclear localized in planta and can physically interact with the repressor COP1. Epistasis analysis between spa2 and cop1 mutations provides strong genetic support for a biological significance of a COP1-SPA2 interaction in the plant. Taken together, our results have identified a new family of proteins that is essential for suppression of photomorphogenesis in darkness.  相似文献   

6.
7.
8.
Cao D  Lin Y  Cheng CL 《The Plant cell》2000,12(2):199-211
The chlorate-resistant mutant cr88 is defective in photomorphogenesis, as shown by the phenotypes of long hypocotyls in red light and yellow cotyledons under all light conditions. A subset of light-regulated genes is expressed at subnormal levels in cr88. To analyze further the role that CR88 plays in photomorphogenesis, we investigated the genetic interactions between cr88 and mutants of two other loci affecting photomorphogenesis, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5). COP1 represses the expression of light-regulated genes in the dark, and HY5 inhibits hypocotyl elongation in the light. Using morphological, cellular, and gene expression criteria for epistasis analyses to position CR88 in the genetic hierarchy of the photomorphogenesis pathway, we determined that CR88 acts downstream of COP1 but in a branch separate from HY5. In the course of our analysis, we discovered that light causes extensive destruction of plastids in dark-grown cop1 seedlings and that cr88 prevents this destruction.  相似文献   

9.
10.
COP1 is a negative regulator of Arabidopsis light-dependent development. Mutation of the COP1 locus causes constitutive photomorphogenesis in the dark. Here, we report the identification of an isoform of the COP1 protein, named COP1b, which is generated by alternative splicing. COP1b has a 60-amino acid deletion in the WD-40 repeat domain relative to the full-length COP1. This splicing step is light-independent and takes place mostly in mature seeds and in germinating seedlings. Transgenic Arabidopsis plants that overexpress COP1b show a de-etiolated phenotype in the dark, with a short hypocotyl, open and developed cotyledons. The transgenic seedlings are adult-lethal. These phenotypes closely resemble that of severe cop-1 mutants, indicating that COP1b has a dominant negative effect on COP1 function. Received: 28 April 1997 / Accepted: 8 October 1997  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
植物光形态建成调控因子COP1黑暗中积累在细胞核内,直接与碱性亮氨酸拉链(bZIP)类转录因子HY5相互作用,并被蛋白酶降解,负调控下游基因的表达;而在光下COP1从细胞核内转移到细胞核外,HY5得以在细胞核内积累,可特异结合于查尔酮合成酶基因CHS等光诱导基因启动子上,正调控相关基因的表达。  相似文献   

19.
20.
Light is both a source of energy and a critically important environmental signal for plant development. Through decades of research, 2 groups of photomorphogenic repressors have been identified. The first group is CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS), which were first identified by genetic screening and then by purification of protein complexes. Another group is the Phytochrome-Interacting Factors (PIFs), which were identified by yeast 2-hybrid screens using phyB as bait. How so many factors work together to repress photomorphogenesis has long been an interesting question. Previously, we demonstrated that CULLIN4 (CUL4) works as a core factor connecting the COP1-SPA complexes, the COP9 signalosome (CSN), and the COP10-DDB1-DET1 (CDD) complex. Recently, we showed that DET1 represses photomorphogenesis through positively regulating the abundance of PIF proteins in the dark. Dr. Huq and his colleagues reported that PIFs may enhance the function of COP1-SPA complexes to promote the degradation of HY5, and thus they synergistically repress photomorphogenesis in the dark. Though much work still needs to be done, these recent breakthroughs shed light on the regulatory relationships among these multiple photomorphogenic repressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号