首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from ∼ 3-fold decreases to ∼ 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as ∼ 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.  相似文献   

2.
DNA wrapped in nucleosomes is sterically occluded, creating obstacles for proteins that must bind it. How proteins gain access to DNA buried inside nucleosomes is not known. Here we report measurements of the rates of spontaneous nucleosome conformational changes in which a stretch of DNA transiently unwraps off the histone surface, starting from one end of the nucleosome, and then rewraps. The rates are rapid. Nucleosomal DNA remains fully wrapped for only approximately 250 ms before spontaneously unwrapping; unwrapped DNA rewraps within approximately 10-50 ms. Spontaneous unwrapping of nucleosomal DNA allows any protein rapid access even to buried stretches of the DNA. Our results explain how remodeling factors can be recruited to particular nucleosomes on a biologically relevant timescale, and they imply that the major impediment to entry of RNA polymerase into a nucleosome is rewrapping of nucleosomal DNA, not unwrapping.  相似文献   

3.
Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.  相似文献   

4.
5.
6.
7.
We have previously shown that nucleosomes are conformationally dynamic: DNA sequences that in the time-average are buried inside nucleosomes are nevertheless transiently accessible, even to large proteins (or any other macromolecule). We refer to this dynamic behavior as "site exposure". Here we show that: (i) the equilibrium constants describing this dynamic site exposure decrease progressively from either end of the nucleosomal DNA in toward the middle; and (ii) these position-dependent equilibrium constants are strongly dependent on the nucleosomal DNA sequence. The progressive decrease in equilibrium constant with distance inside the nucleosome supports the hypothesis that access to sites internal to a nucleosome is provided by progressive (transient) release of DNA from the octamer surface, starting from one end of the nucleosomal DNA. The dependence on genomic DNA sequence implies that a specific genomic DNA sequence could be a major determinant of target site occupancies achieved by regulatory proteins in vivo, by either governing the time-averaged accessibility for a given nucleosome position, or biasing the time-averaged positioning (of mobile nucleosomes), which in turn is a major determinant of site accessibility.  相似文献   

8.
In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30–60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5–10 angstroms and at minutes (1–10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.  相似文献   

9.
The enzyme responsible for maintenance methylation of CpG dinucleotides in vertebrates is DNMT1. The presence of DNMT1 in DNA replication foci raises the issue of whether this enzyme needs to gain access to nascent DNA before its packaging into nucleosomes, which occurs very rapidly behind the replication fork. Using nucleosomes positioned along the 5 S rRNA gene, we find that DNMT1 is able to methylate a number of CpG sites even when the DNA major groove is oriented toward the histone surface. However, we also find that the ability of DNMT1 to methylate nucleosomal sites is highly dependent on the nature of the DNA substrate. Although nucleosomes containing the Air promoter are refractory to methylation irrespective of target cytosine location, nucleosomes reconstituted onto the H19 imprinting control region are more accessible. These results argue that although DNMT1 is intrinsically capable of methylating some DNA sequences even after their packaging into nucleosomes, this is not the case for at least a fraction of DNA sequences whose function is regulated by DNA methylation.  相似文献   

10.
The N and C-terminal tail domains of the core histones play important roles in gene regulation, but the mechanisms through which they act are not known. These tail domains are highly positively charged and are the sites of numerous post-translational modifications, including many sites for lysine acetylation. Nucleosomes in which these tail domains have been removed by trypsin remain otherwise intact, and are used by many laboratories as a model system for highly acetylated nucleosomes. Here, we test the hypothesis that one role of the tail domains is to directly regulate the accessibility of nucleosomal DNA to other DNA-binding proteins. Three assays are used: equilibrium binding by a site-specific, DNA-binding protein, and dynamic accessibility to restriction enzymes or to a non-specific exonuclease. The effects of removal of the tail domains as monitored by each of these assays can be understood within the framework of the site exposure model for the dynamic equilibrium accessibility of target sites located within the nucleosomal DNA. Removal of the tail domains leads to a 1.5 to 14-fold increase in position-dependent equilibrium constants for site exposure. The smallness of the effect weighs against models for gene activation in which histone acetylation is a mandatory initial event, required to facilitate subsequent access of regulatory proteins to nucleosomal DNA target sites. Alternative roles for histone acetylation in gene regulation are discussed.  相似文献   

11.
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2.  相似文献   

12.
13.
14.
The mechanism by which gene regulatory proteins gain access to their DNA target sites is not known. In vitro, binding is inherently cooperative between arbitrary DNA binding proteins whose target sites are located within the same nucleosome. We refer to such competition-based cooperativity as collaborative competition. Here we show that arbitrarily chosen foreign DNA binding proteins, LexA and Tet repressor, cooperate with an adjacently binding endogenous activator protein, Gcn4, to coactivate expression of chromosomal reporter genes in Saccharomyces cerevisiae. Coactivation requires that the cooperating target sites be within a nucleosome-length distance; it leads to increased occupancy by Gcn4 at its binding site; and it requires both Gcn5 and Swi/Snf which, at an endogenous Gcn4-dependent promoter, act subsequent to Gcn4 binding. These results imply that collaborative competition contributes to gene regulation in vivo. They further imply that, even in the presence of the cell's full wild-type complement of chromatin remodeling factors, competition of regulatory proteins with histone octamer for access to regulatory target sites remains a quantitative determinant of gene expression levels. We speculate that initial target site recognition and binding may occur via spontaneous nucleosomal site exposure, with remodeling factor action required downstream to lock in higher levels of regulatory protein occupancy.  相似文献   

15.
The choice of retroviral integration sites is strongly influenced by chromatin: integration in vitro occurs more efficiently into nucleosomal DNA than into naked DNA, and a characteristic pattern of preferred insertion sites with a 10 bp periodicity is observed at the outer face of the nucleosomal DNA. At least three features of nucleosomal DNA could be responsible for the creation of these favored sites: the presence of histones, attachment of the DNA to a protein surface, and DNA bending. To test each of these possibilities, we studied integration in vitro with human immunodeficiency virus and murine leukemia virus integrases into four model targets that mimic features of nucleosomal DNA: (i) catabolite activator protein-DNA complexes; (ii) lac repressor-operator complexes; (iii) lac repressor-induced loops; and (iv) intrinsically bent A-tract DNA. We found that bending of the target DNA can create favored integration sites at the outer face of the helix, irrespective of whether the bent DNA is attached to a protein surface. Our findings offer an explanation for the preferred usage of nucleosomes as integration targets. In addition, they suggest that bending of the target DNA might be an intrinsic feature of the integration reaction.  相似文献   

16.
17.
18.
19.
In the cell, DNA is wrapped on histone octamers, which reduces its accessibility for DNA interacting enzymes. We investigated de novo methylation of nucleosomal DNA in vitro and show that the Dnmt3a and Dnmt1 DNA methyltransferases efficiently methylate nucleosomal DNA without dissociation of the histone octamer from the DNA. In contrast, the prokaryotic SssI DNA methyltransferase and the catalytic domain of Dnmt3a are strongly inhibited by nucleosomes. We also found that full-length Dnmt1 and Dnmt3a bind to nucleosomes much stronger than their isolated catalytic domains, demonstrating that the N-terminal parts of the MTases are required for the interaction with nucleosomes. Variations of the DNA sequence or the histone tails did not significantly influence the methylation activity of Dnmt3a. The observation that mammalian methyltransferases directly modify nucleosomal DNA provides an insight into the mechanisms by which histone tail and DNA methylation patterns can influence each other because the DNA methylation pattern can be established while histones remain associated to the DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号