首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Potato production in the tropical lowlands during the rainyseason is constrained by high temperature and low irradiance.This study examined the effect of these two variables on drymatter production and allocation, using plant growth, leaf anatomy,gas exchange and chlorophyll fluorescence measurements. Plantsof two clones, Solanum goniocalyx cv. Garhuash Huayro (GH) andDTO-33, a heat tolerant clone of S. tuberosum x S. phureja,were grown in growth chambers at 33/25 °C or 20/10 °Cday/night temperature. At each temperature, plants were grownin either 12 h high irradiance (430–450 µmol m–2s–1 PAR) or 12 h low irradiance (250–280 µmolm–2 s–1) both with a 6–h photoperiod extensionof 6 µmol m–2 s–1. Plants were harvested after10 d (initial harvest) and after 20 d (final harvest). By theend of the study DTO-33 had produced more dry matter and hadtuberized, whereas GH had a greater leaf area ratio (LAR) andspecific leaf area (SLA). The highest relative growth rate (RGR)was at low temperature and low irradiance, possibly due to acombination of thin leaves with a large surface area. At thehigh temperature, low irradiance had the opposite effect, producingthe lowest net assimilation rate (NAR) and lowest RGR. Bothtuber number and weight were markedly reduced by high temperature.Low irradiance, in combination with high temperature, producedvirtually no tubers. Stomatal density, which was greater onGH than in DTO-33, was increased at high temperature. When measuredat 30 °C both clones, especially DTO-33, showed heat-adaptationin terms of ability to maintain a high rate of net photosynthesisat 30 °C. Plants grown at high irr-adiance and low temperaturehad the lowest net photosynthetic rate at 30 °C. Concurrentmeasurements of chlorophyll fluorescence indicated that onlythe initial (O) fluorescence parameter was affected. The dataconfirm the field observation that reduction in potato growthat high temperature can be aggravated by lower irradiance. Thisreduction is associated with a reduced leaf area and NAR. Growth analysis, heat adaptation, light  相似文献   

3.
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

4.
Two species of Atriplex were grown under low temperature (8 C day/6 C night) and high temperature (28 C day/20 C night) regimes. The photosynthetic capacity of these plants was studied as a function of temperature in a leaf gas exchange cuvette. Both species showed substantial photosynthetic capacity between 4 and 10 C and this was not enhanced by growth at low temperatures but rather, was somewhat greater in plants grown at higher temperature. Photosynthetic capacity of low temperature-grown plants at high temperature was greater in Atriplex confertifolia (Torr. and Frem.) S. Watts., a native of cool deserts, than in Atriplex vesicaria (Hew. ex. Benth.) from warmer desert areas. Leaves of both species were also subjected to 14CO2 pulse-chase and steady-state feeding experiments under controlled temperature conditions. These experiments revealed that the kinetics of carbon assimilation through the intermediates of the C4 pathway is not substantially disrupted at low temperature in either species. There was, however, a substantial interchange of label between aspartate and malate at low temperature which was not evident at high temperature. There was also an increase in the pool sizes of the C4 acids involved in photosynthesis of A. confertifolia. Speculation as to the explanation of these changes and their possible significance in promoting low temperature C4 photosynthesis in these plants is presented.  相似文献   

5.

The global warming-driven climate change is becoming a major challenge for rice cultivation in Asia and Africa. High-temperature stress impairs the physiology and growth of rice plant, and ultimately results in reduced grain yield. This study was aimed to decipher the physiological and molecular changes occurring during different growth stages of heat-tolerant (N22) and -susceptible (Vandana) rice cultivars under three different heat treatments. Chlorophyll content, membrane integrity, gas exchange parameters and expression of genes and miRNAs were analyzed in N22 and Vandana at seedling, vegetative, and reproductive growth stages after exposing to short and long duration of high temperature stress, and recovery. A number of genes and miRNAs showed dynamic changes in their expression patterns at different growth stages and heat treatments, highlighting the necessity to understand gene regulation before employing the genes for modification through transgenic or gene editing approaches. Predominantly N22 showed distinct and unique capability to reprogram its physiological and molecular machinery during prolonged heat stress at reproductive stage, suggesting that the dynamics in gene regulation is crucial to determine its heat tolerant ability. The study has larger implications in deploying genes for the development of heat tolerant rice cultivars through breeding, transgenic, and genome editing approaches.

  相似文献   

6.
Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode’s symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent. S. carpocapsae was the most virulent to T. molitor. In summary, the H. floridensis strains possess a wide niche breadth in temperature tolerance and have virulence and desiccation levels that are similar to a number of other entomopathogenic nematodes. The strains may be useful for biocontrol purposes in environments where temperature extremes occur within short durations.  相似文献   

7.
以新疆农业科学院吐鲁番农业科学研究所葡萄资源圃中选取的19个具有代表性葡萄品种作为试验材料,在当地自然高温期中段(7月份,日最高温>35 ℃),对葡萄叶片气体交换参数、叶绿素含量、抗氧化酶活性、脯氨酸含量等12个生理指标进行测定,采用模糊隶属函数分析法结合有序样本最优分割聚类法对不同品种耐热性进行评价,考察不同葡萄品种对高温的生理响应差异,为葡萄高温逆境栽培和耐热品种选育提供参考。结果表明:(1)在自然高温条件下,19个品种葡萄的耐热性表现存在差异,‘红地球’、‘藤稔’、‘贝达’、‘和田黄’耐热性较强,而‘无核白’、‘红旗特早玫瑰’、‘水晶无核’、‘维多利亚’、‘矢富罗莎’、‘克瑞森无核’耐热性较弱。(2)不同品种叶片丙二醛含量和抗氧化酶活性变化对高温响应差异较大,耐热性较强的‘红地球’和‘藤稔’的丙二醛含量相对较低,而‘贝达’、‘和田黄’的丙二醛含量相对较高,但其抗氧化酶活性均较高。(3)模糊隶属函数法分析结果表明,各品种生理指标的隶属函数值(AR)大小与其耐热性直观表现基本一致,AR可作为评价葡萄品种耐热性评价的综合指标;进一步聚类分析结果将参试品种划分为耐热性强、中、弱3个类型,并筛选出‘红地球’、‘藤稔’、‘贝达’、‘和田黄’等4个耐热性较强的品种。  相似文献   

8.
2种麻黄光合及其耐逆性分析   总被引:1,自引:0,他引:1  
在河西临泽小泉子麻黄大田种植试验区和民勤沙生植物园中草药种植区,对多年生中麻黄(Ephedra intermedia Schrenk ex Mey.)和草麻黄(E.sinica Stapf)的光合速率、蒸腾速率及其影响因子进行测试分析,结果表明:(1)中麻黄和草麻黄的光合速率日变化均为单峰曲线,峰值均出现在11:00时,分别为12.098和11.560μmol.m-2.s-1。(2)中麻黄蒸腾速率日变化为单峰曲线,峰值在11:00时,为25.992 5 mol.m-2.s-1;草麻黄蒸腾速率日变化呈双峰曲线,峰值分别出现在11:00时与15:00时,峰值为26.280 0和24.3600 mol.m-2.s-1。(3)2种麻黄光合速率与光量子通量密度、大气温度、水汽压亏缺及蒸腾速率之间均呈显著或极显著正相关关系,与大气CO2浓度和胞间CO2浓度之间均呈显著或极显著负相关关系,与其余因子相关不显著。(4)2种麻黄水分利用效率对比分析显示,中麻黄水分利用效率值(平均0.9022)高于草麻黄(平均0.4532),表明中麻黄与草麻黄相比在生长过程中是以较低的蒸腾强度和相对较高的光合速率值来适应干旱荒漠环境的,比草麻黄更具抗干旱性。  相似文献   

9.
在湖南夏季的自然高温下,所测7种桉树的日平均净光合速率在12.56~27.85 mg*dm-2*h-1之间,日平均暗呼吸速率在6.06~22.39 mg*dm-2*h-1之间。高温对桉树净光合速率的影响依品种而异。樟脑桉和蓝桉的净光合速率最高峰值出现在35 ℃的气温下,而邓恩桉的净光合速率却受35 ℃气温的显著抑制。桉树暗呼吸速率并不随气温的升高而增大。  相似文献   

10.
Effect of High Temperature on Photosynthesis in Potatoes   总被引:1,自引:0,他引:1  
The effect of high temperatures on the rate of photosynthesiswas studied in several potato varieties. Temperatures of upto 38 °C did not cause a reduction in the photosynthesisof plants that had been grown at these temperatures for longperiods prior to measurement. Higher temperatures of 40–42°C, or the transfer of plants from daytime temperature regimesof 22 °C to 32 °C, caused a reduction in net photosynthesis.This reduction was found to be essentially mesophyllic in origin.High temperature was found to be associated with a decreasein stomatal resistance, an increase in transpiration, and alarger difference between air and leaf temperatures. Dark respirationrates and compensation points for CO2 concentration were alsogreater at the high temperatures. It was concluded that thepotato crop can be adopted to grow and have an adequate rateof photosynthesis even at relatively high temperatures. Source-sinkrelationships, which were modified by the later formation oftubers at higher temperatures, did not affect photosynthesisin this study. Varietal differences in resistance to heat stresswere observed, with the clone Cl-884 showing a more efficientcapacity for photosynthesis at temperatures up to 40 °Cthan many commonly grown varieties. High temperature, photosynthesis, potato, Solanum tuberosum L  相似文献   

11.
夏季自然高温对桉树光合速率和暗呼吸速率的影响   总被引:3,自引:0,他引:3  
苏冬梅  廖飞勇 《生态科学》2001,20(Z1):21-24
在湖南夏季的自然高温下,所测7种桉树的日平均净光合速率在12.56~27.85mg·dm  相似文献   

12.
Variation in Drought Tolerance of Different Stylosanthes Accessions   总被引:4,自引:2,他引:2  
Twenty genotypes of Stylosanthes consisting four species were evaluated under rain fed condition employing biochemical and physiological attributes to select drought tolerant lines. Relative water content measured at 50 % flowering stage of the plants showed significant variations among the lines which ranged from 32.11 in S. scabra RRR94-86 to 83.33 % in S. seabrana 2539. The results indicated that S. scabra genotypes were more tolerant to drought over other lines as evidenced by high leaf thickness, proline accumulation, content of sugars and chlorophyll, and nitrate reductase activity.  相似文献   

13.
Chlorophyll fluorescence and antioxidative capability in detached leaves of the wild type Arabidopsis thaliana L. ecotype Landsberg erecta (Ler) and three mutants deficient in anthocyanins biosynthesis (tt3, tt4, and tt3tt4) were investigated during treatment with temperatures ranging 25-45 ℃. In comparison with the wild type, chlorophyll fluorescence parameters Fv/Fm, φps,, electron transport rate (ETR), Fv/Fo and qP in three anthocyanin-deficient mutants showed a more rapidly decreasing rate when the temperature was over 35 ℃. Non-photochemical quenching (NPQ) in these mutants was almost completely lost at 44 ℃, whereas the content of heat stable protein dropped and the rate of the membrane leakage increased. Fo-temperature curves were obtained by monitoring Fo levels with gradually elevated temperatures from 22 ℃ to 72 ℃ at 0.5 ℃/min. The inflexion temperatures of Fo were 45.8 ℃ in Ler, 45.1℃ in tt3, 44.1℃ in tt4 and 42.3 ℃ in tt3tt4, respectively. The temperatures of maximal Fo in three mutants were 1.9-3.8℃ lower than the wild type plants. Meanwhile, three mutants had lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and an inferior scavenging capability to DPPH (1.1-diphenyl-2-picrylhy.drazyl) radical under heat stress, and in particular tt3tt4 had the lowest antioxidative potential. The results of the diaminobenzidine-H2O2 histochemical staining showed that H2O2 was accumulated in the leaf vein and mesophyll cells of mutants under treatment at 40 ℃, and it was significantly presented in leaf cells of tt3tt4. The sensitivity of Arabidopsis anthocyanins-deficient mutants to high temperatures has revealed that anthocyanins in normal plants might provide protection from high temperature injury, by enhancing its antioxidative capability under high temperature stress.  相似文献   

14.
Chlorophyll fluorescence and antioxidative capability in detached leaves of the wild type Arabidopsis thaliana L.ecotypeLandsberg erecta(Ler)and three mutants deficient in anthocyanins biosynthesis(tt3,tt4,and tt3tt4)were investigatedduring treatment with temperatures ranging 25-45℃.In comparison with the wild type,chlorophyll fluorescence parametersFv/Fm,Φ_(PSII),electron transport rate(ETR),Fv/Fo and qP in three anthocyanin-deficient mutants showed a more rapidlydecreasing rate when the temperature was over 35℃.Non-photochemical quenching(NPQ)in these mutants was almostcompletely lost at 44℃,whereas the content of heat stable protein dropped and the rate of the membrane leakage increased.Fo-temperature curves were obtained by monitoring Fo levels with gradually elevated temperatures from 22℃ to 72℃ at0.5℃/min.The inflexion temperatures of Fo were 45.8℃ in Ler,45.1℃ in tt3,44.1℃ in tt4 and 42.3℃ in tt3tt4,respectively.The temperatures of maximal Fo in three mutants were 1.9-3.8℃ lower than the wild type plants.Meanwhile,three mutantshad lower activities of superoxide dismutase(SOD)and ascorbate peroxidase(APX)and an inferior scavenging capabilityto DPPH(1.1-diphenyl-2-picrylhy.drazyl)radical under heat stress,and in particular tt3tt4 had the lowest antioxidativepotential.The results of the diaminobenzidine-H_2O_2 histochemical staining showed that H_2O_2 was accumulated in theleaf vein and mesophyll cells of mutants under treatment at 40℃,and it was significantly presented in leaf cells of tt3tt4.The sensitivity of Arabidopsis anthocyanins-deficient mutants to high temperatures has revealed that anthocyanins innormal plants might provide protection from high temperature injury,by enhancing its antioxidative capability under hightemperature stress.  相似文献   

15.
Acclimation to optimal or suboptimal temperature may influencephotosynthetic properties of different maize genotypes in distinctways. In this study, leaf growth and chloroplast functioningof the second leaves of Penjalinan, an inbred line used in warmtropical regions (CS) and Z7, an inbred line adapted to cooltemperate regions (CT), acclimated at near optimal (24/22°C)and suboptimal (15/13°C) temperature, were compared. Whenacclimated at 24/22°C, there was little difference betweenCT and CS in pigment content, in photosynthetic capacity, measuredas the maximum quantum yield of oxygen evolution under lightlimiting conditions (  相似文献   

16.
17.
We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this “rhizosphere effect” on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to: (1) determine whether stimulatory and/or inhibiting factors associated with particular plant species regulate ciliate diversity and abundance and (2) obtain a better understanding about the mechanism by which these plant factors operate in the rhizosphere. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis). Analysis of variance showed that the bacteria plus nutrients and the nutrients only treatment had no significant effect on overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species increased the taxonomic resolution of treatment effects revealing that bacterial slurries had a significant effect on colpodean ciliate species richness. Thus, for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualisms between plants and protozoa.  相似文献   

18.
本文用50mmol/L的配比盐水溶液对3-5叶期高粱幼苗进行处理,用幼苗相对成活率对568份高粱种质进行分级,结果显示:5%的种质具有3级以上的耐盐性。此法可以用来进行大量种质的苗期耐盐筛选。根据植株在不同含盐量的盐碱地上生长的性状差异,对成株期的高粱进行耐盐鉴定,利用处理间性状的差异及各性状与穗重和秆重的相关性构建一个耐盐指数来评价材料对盐碱的耐性,从而对18个高粱品种和品系进行了分级,适合于盐碱地推广品种的筛选。  相似文献   

19.
20.
Wu MT  Wallner SJ 《Plant physiology》1984,75(3):778-780
Using cultured pear (Pyrus communis cv Bartlett) cells, heat tolerance induced by heat shock was compared to that developed during growth at high temperature. After growth at 22°C, cells exposed to 38°C for 20 minutes (heat shock) showed maximum increased tolerance within 6 hours. Cells grown at 30°C developed maximum heat tolerance after 5 to 6 days; this maximum was well below that induced by heat shock. Heat shock-induced tolerance was fully retained at 22°C for 2 days and was only partly lost after 4 days. However, pear cells acclimated at 30°C lost all acquired heat tolerance 1 to 2 days after transfer to 22°C. In addition, cells which had been heat-acclimated by growth at 30°C showed an additional increase in heat tolerance in response to 39°C heat shock. The most striking difference between heat shock and high growth temperature effects on heat tolerance was revealed when tolerance was determined using viability tests based on different cell functions. Growth at 30°C produced a general hardening, i.e. increased heat tolerance was observed with all three viability tests. In contrast, significantly increased tolerance of heat-shocked cells was observed only with the culture regrowth test. The two types of treatment evoke different mechanisms of heat acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号