首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) and polyamines play essential roles in many developmental processes and abiotic stress responses in plants. NO and polyamines are metabolized from arginine through NO synthase (NOS) and arginine decarboxylase (ADC), respectively. Function of arginase, another important enzyme involved in arginine metabolism, in abiotic stress remains largely unknown. In the recent study, we have dissected the impact of arginase on arginine metabolism and abiotic stress responses through manipulating AtARGAHs expression. The results suggested that manipulation of arginase expression modulated accumulation of arginine and direct downstream products of arginine catabolism. AtARGAHs knockout lines exhibited increased accumulation of polyamines and NO and enhanced abiotic stress tolerance, while AtARGAHs overexpressing lines displayed the opposite results. Notably, we highlighted that Arabidopsis arginase plays distinctive and dual roles in the crosstalk between polyamines and NO signaling during abiotic stress responses, mediating both arginine metabolism and reactive oxygen species (ROS) accumulation. It is likely that accumulation of both NO and polyamines might activate abiotic stress responses in the plant.  相似文献   

2.
Protective role of arginase in a mouse model of colitis   总被引:5,自引:0,他引:5  
Arginase is the endogenous inhibitor of inducible NO synthase (iNOS), because both enzymes use the same substrate, l-arginine (Arg). Importantly, arginase synthesizes ornithine, which is metabolized by the enzyme ornithine decarboxylase (ODC) to produce polyamines. We investigated the role of these enzymes in the Citrobacter rodentium model of colitis. Arginase I, iNOS, and ODC were induced in the colon during the infection, while arginase II was not up-regulated. l-Arg supplementation of wild-type mice or iNOS deletion significantly improved colitis, and l-Arg treatment of iNOS(-/-) mice led to an additive improvement. There was a significant induction of IFN-gamma, IL-1, and TNF-alpha mRNA expression in colitis tissues that was markedly attenuated with l-Arg treatment or iNOS deletion. Treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine worsened colitis in both wild-type and iNOS(-/-) mice. Polyamine levels were increased in colitis tissues, and were further increased by l-Arg. In addition, in vivo inhibition of ODC with alpha-difluoromethylornithine also exacerbated the colitis. Taken together, these data indicate that arginase is protective in C. rodentium colitis by enhancing the generation of polyamines in addition to competitive inhibition of iNOS. Modulation of the balance of iNOS and arginase, and of the arginase-ODC metabolic pathway may represent a new strategy for regulating intestinal inflammation.  相似文献   

3.
Like many arginolytic streptococci,Streptococcus sanguis P4A7 is auxotrophic for arginine (Arg) and can also use this amino acid as an energy source; its dissimilation via the arginine deiminase (ADI) pathway is potentially important in dental plaque metabolism. Arg uptake was investigated in chemostat-grown cells; two systems were found: a low-affinity system (A) and a high-affinity system (B). Both systems (a) functioned as well as pH 5.5 and 8.0 as at 7.0; (b) were insensitive to proton-conducting uncouplers and metabolic inhibitors, and (c) were unaffected by prior starvation of cells or their pre-energization with glucose. Thus, Arg uptake appeared to be energy-independent. Inhibition studies with Arg structural analogues indicated that both the carboxyl and guanidino functional groups and their spatial relationship are important as recognition sites in system A, while all three functional groups appear important in system B. It is suggested that system A represents the ADI pathway, whereas system B is used to satisfy the organism's auxotrophic requirement.  相似文献   

4.
The levels of the activities of argininosuccinate synthetase and argininosuccinate lyase were measured in soybean (glycine max L. var. Mandarin) cell suspension cultures grown in the presence or absence of exogenous arginine. In some experiments, actinomycin D or cycloheximide were also added to the cultures, at critical stages of their growth. The results obtained led to the conclusion that activity of argininosuccinate synthetase is subject to significant inhibition by levels of arginine similar to those found to occur within the cells. Argininosuccinate lyase activity appeared to be enhanced, when arginine levels were increased above those occurring physiologically. Both enzymes appeared to be subject to inactivation, possibly via proteolysis.  相似文献   

5.
Todd CD  Gifford DJ 《Planta》2003,217(4):610-615
Following germination of loblolly pine (Pinus taeda L.) seeds, storage proteins in the embryo and megagametophyte are broken down to provide nitrogen, in the form of amino acids, to the developing seedling. A substantial portion of the free amino acids released in this process is arginine. Arginine is hydrolyzed in the cotyledons of the seedling by the enzyme arginase (EC 3.5.3.1), which is under developmental control. It has been shown previously that the seedling is able to initiate arginase gene expression in vitro in the absence of the megagametophyte, however, presence of the megagametophyte causes a greater accumulation of arginase protein and mRNA. Using an in vitro culture system we show that arginine itself may be responsible for up-regulating arginase activity. Application of exogenous arginine to cotyledons of seedlings germinated in the absence of the megagametophyte caused an increase in total shoot pole arginase activity as well as arginase specific activity. Arginine was also able to induce arginase mRNA accumulation in the same tissue.  相似文献   

6.
7.
Some aspects of cyst synthesis in mouse trichinosis   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
11.
Summary Some remarks on the role of bacteria in deep lakes will be presented with an emphasis on their functioning in the carbon cycle in such ecosystems.The metabolic intensity of most lakes is regulated to a large extent at the primary producer level. Aerobic and anaerobic decomposition by heterotrophic bacteria of the unstable ultimate products of photosynthesis results in the production of carbon dioxide and methane. Bacterial growth occurs at the expense of energy released by the flow of electrons from donors to acceptors. Typical electron acceptors for bacterially mediated reactions are oxygen, nitrate, sulphate and carbon dioxide. When oxygen is used as electron acceptor, the highest amount of energy is released, while the lowest is released when carbon dioxide is used. These reactions are mediated biologically, and the chemical reaction sequence is paralleled by an ecological succession of microorganisms: aerobic heterotrophs, denitrifiers, fermenting bacteria, sulphate reducers, and methane producers. The presence of oxygen is inhibitory to the organisms mediating the last reactions (STUMM, 1966; McCARTY, 1972), and this explains the succession of micro-organisms concomittant with the decrease in redox potential.Both labile and refractory fractions of the pelagial dissolved organic matter can directly be utilized largely by heterotrophic bacteria. At the onset of the summer stratification of Lake Vechten a high concentration (numbers 109 bact/L) of heterotrophic bacteria has been detected in the lower water layers (CAPPENBERG, 1972). The reason for this increase may be a release of nutrients from the mud. During stratification the water layers above the mud become anaerobic owing to the metabolic activity of the bacterial flora and the chemical oxygen demand of the mud. In summer time the highest numbers of heterotrophic bacteria are found in the metalimnion, where organic matter accumulates due to a lower relative rate of sedimentation caused by an increase in viscosity and density.Furthermore it was found that sulphate-reducing bacteria which are capable of reducing sulphates to sulphides using sulphate as terminal electron acceptor, were observed in the hypolimnion only at the time of maximal stratification. During stagnation, gradually decreasing sulphate concentrations are found in the hypolimnion, correlated with increaseing cell numbers of sulphate reducers. As no sulphate could be detected in the mud of Lake Vechten as well, we may conclude that the sulphate concentration limits the number of these bacteria, as can be predicted for similar aquatic environments.Usually the sulphate reducers are found in bottom deposits and are an important group of bacteria of the non-methanogenic populations in mud. Summarizing the biological methane production and its subsequent oxidation by methane-oxidizing bacteria, we may conclude that these processes can be important factors functioning in the carbon cycle in deep fresh-water ecosystems.  相似文献   

12.
13.
14.
Association of arginase and ornithine transcarbamoylase (OTCase) has been proposed to play an essential role in the regulation of arginine metabolism in Saccharomyces cerevisiae (Wiame, J.-M. (1971) Curr. Top. Cell. Reg. 4, 1-39). In this report multienzyme complex formation is directly demonstrated in the presence of the active-site ligands for OTCase and arginase. Using equilibrium sedimentation, a dissociation constant for complex formation was determined to be 2.3 X 10(-8) M in the presence of ornithine and agmatine, active-site ligands for OTCase and arginase, respectively. A molecular stoichiometry in the complex of one molecule of OTCase to one molecule of arginase was verified using transmission electron microscopy. The dimensions of the complex were determined by negative staining and rotary and unidirectional shadowing techniques to be 102 A wide by 81 A high. These dimensions are quantitively consistent with dimensions of the individual enzymes (Duong, L. T., Eisenstein, E., Green, S. M., Ornberg, R. L., and Hensley, P. (1986) J. Biol. Chem. 261, 12807-12813). The enzymatic activity of OTCase is virtually completely inhibited when associated with arginase, reflecting the dramatic modulation of enzyme activity as a consequence of the acquisition of quaternary structure in this multienzyme complex.  相似文献   

15.
16.
17.
Recent analyses of the genomes of several animal species, including man, have revealed that a large number of ion channels are present in the nervous system. Our understanding of the physiological role of these channels in the nervous system has followed the evolution of biophysical techniques during the last century. The observation and the quantification of the electrical events associated with the operation of the ionic channels has been, and still is, one of the best tools to analyse the various aspects of their contribution to nerve function. For this reason, we have chosen to use electrophysiological recordings to illustrate some of the main functions of these channels. The properties and the roles of Na+ and K+ channels in neuronal resting and action potentials are illustrated in the case of the giant axons of the squid and the cockroach. The nature and role of the calcium currents in the bursting behaviour of the neurons are illustrated for Aplysia giant neurons. The relationship between presynaptic calcium currents and synaptic transmission is shown for the squid giant synapse. The involvement of calcium channels in survival and neurite outgrowth of cultured neurons is exemplified using embryonic cockroach brain neurons. This same neuronal preparation is used to illustrate ion channel noise and single-channel events associated with the binding of agonists to nicotinic receptors. Some features of the synaptic activity in the central nervous system are shown, with examples from the cercal nerve giant-axon preparation of the cockroach. The interplay of different ion conductances involved in the oscillatory behaviour of the Xenopus spinal motoneurons is illustrated and discussed. The last part of this review deals with ionic homeostasis in the brain and the function of glial cells, with examples from Necturus and squids.  相似文献   

18.
Hepatic arginase (L-arginine amidinohydrolase, EC 3.5.3.1) is an oligomer composed of three or four subunits. The present studies indicate heterogeneity in the size and charge of arginase subunits in mouse liver. Two types of arginase subunits with molecular weights of approximately 35,000 and 38,000 have been found. These two subunits are detected in liver cytosol or in purified preparations of arginase after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Two dimensional SDS-PAGE revealed multiple ionic forms of arginase for both the 35,000 and 38,000 subunits; the subunits contain basic proteins (pI range 7.8-9.1) and acidic proteins (pI range 5.8-6.4). Limited proteolysis by trypsin eliminated the molecular weight differences between the subunits without substantially affecting either their isoelectric points or activity. Comparative peptide maps and amino acid analyses of the 35,000- and 38,000-Da subunits showed that they were very similar. The data indicate that a neutral peptide (approx 3000 Da) is responsible for the differences in subunit molecular weight and that the multiple sized and charged forms are variants of the same protein.  相似文献   

19.
20.
Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号