首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proteasome is a multi-subunit proteolytic complex that degrades proteins covalently linked to multiple molecules of ubiquitin. Earlier studies showed a role for the ubiquitin-proteasome pathway in several models of long-term memory and other forms of synaptic plasticity. In Aplysia, the ubiquitin-proteasome pathway has been shown to contribute to the induction of long-term facilitation. In other model systems, ubiquitin-proteasome-mediated proteolysis has also been shown to play a role in synapse development. Previous studies of synaptic plasticity focused on changes in components or the substrates of the ubiquitin-proteasome pathway in whole neurons. Modification of specific synapses would require precise spatial and temporal regulation of the components of the ubiquitin-proteasome pathway within the subcellular compartments of neurons during learning. As a first step towards testing the idea of local regulation of the ubiquitin-proteasome pathway in neurons, we investigated proteasome activity in nuclear and synaptosomal fractions. Here we show that proteasome activity in the synaptic terminals is higher compared to the activity in the nucleus in the Aplysia nervous system as well as in the mouse brain. Furthermore, the proteasome activity in the two neuronal compartments is differentially modulated by protein kinases. Differential regulation of proteasome activity in neuronal compartments such as the synaptic terminals is likely to be a key mechanism underlying synapse-specific plasticity.  相似文献   

3.
The molecular mechanisms of the pacemakers underlying circadian rhythms are not well understood. One molecule that presumably functions in the circadian clock of Drosophila is the product of the period (per) gene, which dramatically affects biological rhythms when mutated. An antibody specific for the per protein labels putative circadian pacemaker neurons and fibers in eyes of two marine gastropods, Aplysia and Bulla. As was found for the Drosophila per protein, there is a daily rhythm in the levels of the per-like antigen in Aplysia eyes. Thus, certain molecular features of the per protein, as well as aspects of the temporal regulation of its expression, may be conserved in circadian pacemakers of widely divergent species.  相似文献   

4.
5.
Small RNA-mediated gene regulation during development causes long-lasting changes in cellular phenotypes. To determine whether small RNAs of the adult brain can regulate memory storage, a process that requires stable and long-lasting changes in the functional state of neurons, we generated small RNA libraries from the Aplysia CNS. In these libraries, we discovered an unexpectedly abundant expression of a 28 nucleotide sized class of piRNAs in brain, which had been thought to be germline specific. These piRNAs have unique biogenesis patterns, predominant nuclear localization, and robust sensitivity to serotonin, a modulatory transmitter that is important for memory. We find that the Piwi/piRNA complex facilitates serotonin-dependent methylation of a conserved CpG island in the promoter of CREB2, the major inhibitory constraint of memory in Aplysia, leading to enhanced long-term synaptic facilitation. These findings provide a small RNA-mediated gene regulatory mechanism for establishing stable long-term changes in neurons for the persistence of memory.  相似文献   

6.
Long-term memory for sensitization in Aplysia requires new protein and RNA synthesis. Here, we identify a late protein as calreticulin, the major Ca(2+)-binding protein of the lumen of the endoplasmic reticulum. An antiserum against Aplysia calreticulin reveals an enrichment of calreticulin immunoreactivity in presynaptic varicosities. Quantitative S1 nuclease analysis indicates that the steady-state level of calreticulin mRNA in Aplysia sensory neurons increases during the maintenance phase of long-term sensitization. The finding that this mRNA increases in expression late, some time after training, is consistent with the idea that long-term neuromodulatory changes underlying sensitization may depend on a cascade of gene expression in which the induction of early regulatory genes leads to the expression of late effector genes.  相似文献   

7.
1.) Cellular processes that contribute to the acquisition and expression of long-term sensitization have been examined in Aplysia. The tail-siphon withdrawal reflex was studied because the neural circuit for this reflex has been well characterized. Furthermore, the sensory neurons of this neural circuit exhibit cellular changes that accompany short-term sensitization. 2.) Repeated application of noxious stimuli to the animal produces a long-lasting enhancement of reflex withdrawal of the siphon when the animal is tested with a weak stimulus to the tail. These findings confirm the existence of long-term sensitization in Aplysia, first described by Pinkser et al. (1973). 3.) Biophysical correlates of long-term sensitization were examined in the first central relay of the tail-siphon reflex circuit, the sensory neurons that innervate the animal's tail. The net outward membrane currents of these cells reduced after 24 hours as a consequence of long-term sensitization training. 4.) The intracellular signal for the induction of these changes in membrane currents was examined by intracellular injection of cAMP into individual sensory neurons. This procedure mimics at least some of the effects of sensitization training at the single-cell level. cAMP induced a long-term reduction of membrane K+ currents 24 hours after the cells were injected with cAMP. The membrane currents reduced by cAMP were similar to those reduced by long-term sensitization training. 5.) Preliminary experiments indicate that neurotransmitters and agents that induce an evaluation of cAMP in the sensory neurons also alter the incorporation of labeled amino acids into specific proteins in the sensory neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Haem disorder in two myoglobins: comparison of reorientation rate.   总被引:1,自引:0,他引:1       下载免费PDF全文
The globins from sperm whale and from Aplysia limacina myoglobins were reconstituted by addition of stoichiometric ferric protohaem and the Soret c.d. was followed as a function of time. For both reconstituted proteins, the Soret c.d. changes with time, reflecting haem reorientation inside its pocket, as previously described [Aojula, Wilson & Drake (1986) Biochem. J. 237, 613-616] for sperm whale myoglobin. The time course of the c.d. transition is found to be approx. 10 times faster in Aplysia than in sperm whale myoglobin, a result which is in agreement with the known structural and physicochemical properties of the two myoglobins; furthermore, these results confirm that c.d. and n.m.r. data on haem orientation in haemoproteins reflect the same molecular phenomenon.  相似文献   

10.
11.
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 ( Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.  相似文献   

12.
13.
Sutton MA  Masters SE  Bagnall MW  Carew TJ 《Neuron》2001,31(1):143-154
Short- and long-term synaptic facilitation induced by serotonin at Aplysia sensory-motor (SN-MN) synapses has been widely used as a cellular model of short- and long-term memory for sensitization. In recent years, a distinct intermediate phase of synaptic facilitation (ITF) has been described at SN-MN synapses. Here, we identify a novel intermediate phase of behavioral memory (ITM) for sensitization in Aplysia and demonstrate that it shares the temporal and mechanistic features of ITF in the intact CNS: (1) it declines completely prior to the onset of LTM, (2) its induction requires protein but not RNA synthesis, and (3) its expression requires the persistent activation of protein kinase A. Thus, in Aplysia, the same temporal and molecular characteristics that distinguish ITF from other phases of synaptic plasticity distinguish ITM from other phases of behavioral memory.  相似文献   

14.
The Trk family of receptor tyrosine kinases plays a role in synaptic plasticity and in behavioral memory in mammals. Here, we report the discovery of a Trk-like receptor, ApTrkl, in Aplysia. We show that it is expressed in the sensory neurons, the locus for synaptic facilitation, which is a cellular model for memory formation. Serotonin, the facilitatory neurotransmitter, activates ApTrkl, which, in turn, leads to activation of ERK. Finally, inhibiting the activation of ApTrkl with the Trk inhibitor K252a or using dsRNA to inhibit ApTrkl blocks the serotonin-mediated activation of ERK in the cell body, as well as the cell-wide long-term facilitation induced by 5-HT application to the cell body. Thus, transactivation of the receptor tyrosine kinase ApTrkl by serotonin is an essential step in the biochemical events leading to long-term facilitation in Aplysia.  相似文献   

15.
16.
Abstract Long-term facilitation in Aplysia and other forms of long-term memory in invertebrates and vertebrates require the gene expression cascade induced by cAMP-responsive element binding protein (CREB). Normally, gene expression by CREB is inhibited by repressors. The molecular mechanisms by which the repression is relieved are not understood. Our results show that Aplysia CREB repressor is a substrate for degradation by the ubiquitin-proteasome pathway. Treatment with the facilitatory neurotransmitter 5-hydroxy tryptamine (5-HT) leads to CREB repressor degradation in vivo and the degradation can be blocked by a specific proteasome inhibitor. Our biochemical studies show that attachment of ubiquitin molecules marks the CREB repressor for degradation by the proteasome. Protein kinase C (PKC) stimulates ubiquitination and degradation of the CREB repressor. Our results suggest that proteolytic removal of the CREB repressor is a potential mechanism for controlling gene expression by CREB. Without stimulation, gene expression is suppressed by the CREB repressor. Upon stimulation with 5-HT, PKC is activated, causing enhancement in ubiquitination and degradation of the CREB repressor. Thus, regulation of proteolysis of the CREB repressor by PKC might be critical in determining whether or not CREB-mediated gene expression goes forward during induction of long-term facilitation.  相似文献   

17.
The time course of the requirement for local protein synthesis in the stabilization of learning-related synaptic growth and the persistence of long-term memory was examined using Aplysia bifurcated sensory neuron-motor neuron cultures. We find that, following repeated pulses of serotonin (5-HT), the local perfusion of emetine, an inhibitor of protein synthesis, or a TAT-AS oligonucleotide directed against ApCPEB blocks long-term facilitation (LTF) at either 24 or 48 hr and leads to a selective retraction of newly formed sensory neuron varicosities induced by 5-HT. By contrast, later inhibition of local protein synthesis, at 72 hr after 5-HT, has no effect on either synaptic growth or LTF. These results define a specific stabilization phase for the storage of long-term memory during which newly formed varicosities are labile and require sustained CPEB-dependent local protein synthesis to acquire the more stable properties of mature varicosities required for the persistence of LTF.  相似文献   

18.
19.
We have purified and characterized a galactose-binding lectin from the gonads of the mollusk Aplysia californica that modulates neurite outgrowth from cultured Aplysia neurons. Agglutination of sheep red blood cells (RBC) by this lectin, termed Aplysia gonad lectin (AGL), is inhibited strongly by galactose and to a lesser extent by fucose. On SDS-PAGE, AGL appears as a single species with a molecular weight of 34 kD under reducing conditions, and 65 kD under nonreducing conditions. This suggests that AGL is a disulfide-linked dimer in its native state. Amino terminal sequence analysis of purified AGL indicates a similarity to another galactose-binding lectin, phytohemagglutinin-E (E-PHA), found in red kidney beans. By using polyclonal antibodies prepared against AGL, we have found that the lectin is present in the gonads and eggs but not in other tissues of adult Aplysia californica. We have examined biological actions of AGL on Aplysia neurons growing in primary cell culture. AGL affects several properties of these neurons. The addition of 100 nM AGL to cultured neurons enhances neurite outgrowth from the cell soma, resulting in a greater number of primary processes. In addition, AGL acts as a neurotrophic agent, increasing neurite viability in vitro. This trophic effect is not seen with concanavalin A (con A), another lectin known to affect several properties of cultured Aplysia neurons. The results are consistent with the suggestion that AGL may play a role in neuronal differentiation and/or maintenance of viability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号