首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seven new O-methylated theaflavins (TFs) were synthesized by using O-methyltransferase from an edible mushroom. Using TFs and O-methylated TFs, metabolic stability in pooled human liver S9 fractions and inhibitory effect on H2O2-induced oxidative damage in human HepG2 cells were investigated. In O-methylation of theaflavin 3′-O-gallate (TF3′G), metabolic stability was potentiated by an increase in the number of introduced methyl groups. O-methylation of TF3,3′G did not affect metabolic stability, which was likely because of a remaining 3-O-galloyl group. The inhibitory effect on oxidative damage was assessed by measuring the viability of H2O2-damaged HepG2 cells treated with TFs and O-methylated TFs. TF3,3′G and O-methylated TFs increased cell viabilities significantly compared with DMSO, which was the compound vehicle (p?<?0.05), and improved to approximately 100%. Only TF3′G did not significantly increase cell viability. It was suggested that the inhibitory effect on H2O2-induced oxidative damage was potentiated by O-methylation or O-galloylation of TFs.  相似文献   

2.
The effective fall in cytosolic reduced glutathione levels in intact red cells exposed to exogenous oxidant stress in the form of Fe2+, H2O2 and ascorbate was caused by H2O2 alone. Relatively high concentrations of Fe2+ had no contributory effect on the oxidizing capacity of H2O2. Ascorbate, at physiological levels, showed no protection whereas glucose was totally protective. Since glucose, via hexose monophosphate shunt, is the only source of reducing equivalent in red cells, the NADPH/NADP+ redox role in the diminution of intracellular reduced glutathione.  相似文献   

3.
Tropolones, the naturally occurring compounds responsible for the durability of heartwood of several cupressaceous trees, have been shown to possess both metal chelating and antioxidant properties. However, little is known about the ability of tropolone and its derivatives to protect cultured cells from oxidative stress-mediated damage. In this study, the effect of tropolones on hydrogen peroxide-induced DNA damage and apoptosis was investigated in cultured Jurkat cells. Tropolone, added to the cells 15 min before the addition of glucose oxidase, provided a dose dependent protection against hydrogen peroxide induced DNA damage. The IC50 value observed was about 15 μM for tropolone. Similar dose dependent protection was also observed with three other tropolone derivatives such as trimethylcolchicinic acid, purpurogallin and β-thujaplicin (the IC50 values were 34, 70 and 74 μM, respectively), but not with colchicine and tetramethyl purpurogallin ester. Hydrogen peroxide-induced apoptosis was also inhibited by tropolone. However, in the absence of exogenous H2O2 but in the presence of non-toxic concentrations of exogenous iron (100 μM Fe3+), tropolone dramatically increased the formation of single strand breaks at molar ratios of tropolone to iron lower than 3 to 1, while, when the ratio increased over 3, no toxicity was observed. In conclusion, the results presented in this study indicate that the protection offered by tropolone against hydrogen peroxide-induced DNA damage and apoptosis was due to formation of a redox-inactive iron complex, while its enhancement of iron-mediated DNA damage at ratios of [tropolone]/[Fe3+] lower than 3, was due to formation of a lipophilic iron complex which facilitates iron transport through cell membrane in a redox-active form.  相似文献   

4.
Vitamin C homeostasis in skeletal muscle cells   总被引:3,自引:0,他引:3  
In skeletal muscle, vitamin C not only enhances carnitine biosynthesis but also protects cells against ROS generation induced by physical exercise. The ability to take up both ascorbic and dehydroascorbic acid from the extracellular environment, together with the ability to recycle the intracellular vitamin, maintains high cellular stores of ascorbate. In this study, we examined vitamin C transport and recycling, by using the mouse C2C12 and rat L6C5 muscle cell lines, which exhibit different sensitivity to oxidative stress and GSH metabolism. We found that: (1) both cell lines express SVCT2, whereas SVCT1 is expressed at very low levels only in proliferating L6C5 cells; furthermore L6C5 myoblasts are more efficient in ascorbic acid transport than C2C12 myoblasts; (2) C2C12 cells are more efficient in dehydroascorbic acid transport and ascorbyl free radical/dehydroascorbic acid reduction; (3) differentiation is paralleled by decreased ascorbic acid and dehydroascorbic acid transport and reduction and increased ascorbyl free radical reduction; (4) differentiated cells are more responsive to oxidative stress induced by glutathione depletion; indeed, myotubes showed increased SVCT2 expression and thioredoxin reductase-mediated dehydroascorbic acid reduction. From our data, SVCT2 and NADPH-thioredoxin-dependent DHA reduction appears to belong to an inducible system activated in response to oxidative stress.  相似文献   

5.
We examined the mechanism of H(2)O(2)-induced cytotoxicity and its relationship to oxidation in human leukemia cells. The HL-60 promyelocytic leukemia cell line was sensitive to H(2)O(2), and at concentrations up to about 20-25 micrometer, the killing was mediated by apoptosis. There was limited evidence of lipid peroxidation, suggesting that the effects of H(2)O(2) do not involve hydroxyl radical. When HL-60 cells were exposed to H(2)O(2) in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN), we detected a 12-line electron paramagnetic resonance spectrum assigned to the POBN/POBN(.) N-centered spin adduct previously described in peroxidase-containing cell-free systems. Generation of this radical by HL-60 cells had the same H(2)O(2) concentration dependence as initiation of apoptosis. In contrast, studies with the K562 human erythroleukemia cell line, which is often used for comparison with the HL-60, and with high passaged HL-60 cells (spent HL-60) studied under the same conditions failed to generate POBN(.). Cellular levels of antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase did not explain the differences between these cell lines. Interestingly, the K562 and spent HL-60 cells, which did not generate the radical, also failed to undergo H(2)O(2)-induced apoptosis. Based on this we reasoned that the difference in H(2)O(2)-induced apoptosis might be due to the enzyme myeloperoxidase. Only the apoptosis-manifesting HL-60 cells contained appreciable immunoreactive protein or enzymatic activity of this cellular enzyme. When HL-60 cells were incubated with methimazole or 4-aminobenzoic acid hydrazide, which are inhibitors of myeloperoxidase, they no longer underwent H(2)O(2)-induced apoptosis. Hypochlorous acid stimulated apoptosis in both HL-60 and spent HL-60 cells, indicating that another oxidant generated by myeloperoxidase induces apoptosis and that it may be the direct mediator of H(2)O(2)-induced apoptosis. Taken together these observations indicate that H(2)O(2)-induced apoptosis in the HL-60 human leukemia cell is mediated by myeloperoxidase and is linked to a non-Fenton oxidative event marked by POBN(.).  相似文献   

6.
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.  相似文献   

7.
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake‐induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2O2) production in the epidermis due to the increasing expression of NADPH‐oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake‐induced rhizosphere alkalization led to Fe deficiency in rice, through H2O2‐dependent manners of root oxidation ability and phenylpropanoid metabolism.  相似文献   

8.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

9.
We investigated chromosomal damage caused by a typical flavonoid, quercetin, and its two conjugates, quercetin-3-O-sulfate and isorhamnetin, and their protective effects against chromosomal damage induced by H2O2. The chromosomal damage was detected by the cytokinesis-block micronucleus (CBMN) assay using a lymphoblastoid cell line, WIL2-NS. We found that quercetin itself induced chromosomal damage at 10 microM, but quercetin-3-O-sulfate and isorhamnetin did not induce damage up to 30 microM. In the medium used for the CBMN assay, quercetin (at 100 microM) generated a high concentration of H2O2, but the two conjugates did not at the same concentration. On the other hand, pretreatment with quercetin (at 1 microM), quercetin-3-O-sulfate (at 10 microM), and isorhamnetin (at 5 microM) prevented H2O2-induced chromosomal damage to WIL2-NS cells. These findings suggest that the induction and prevention of H2O2-induced chromosomal damage are different between quercetin and its metabolites.  相似文献   

10.
A decline in reduced glutathione (GSH) levels is associated with aging and many age-related diseases. The objective of this study was to determine whether other antioxidants can compensate for GSH depletion in protection against oxidative insults. Rabbit lens epithelial cells were depleted of > 75% of intracellular GSH by 25-200 microM buthionine sulfoximine (BSO). Depletion of GSH by BSO alone had little direct effect on cell viability, but resulted in an approximately 30-fold increase in susceptibility to H(2)O(2)-induced cell death. Experimentally enhanced levels of nonprotein sulfhydryls other than GSH (i.e., N-acetylcysteine) did not protect GSH-depleted cells from H(2)O(2)-induced cell death. In contrast, pretreatment of cells with vitamin C (25-50 microM) or vitamin E (5-40 microM), restored the resistance of GSH-depleted cells to H(2)O(2). However, concentrations of vitamin C > 400 microM and vitamin E > 80 microM enhanced the toxic effect of H(2)O(2). Although levels of GSH actually decreased by 10-20% in cells supplemented with vitamin C or vitamin E, the protective effects of vitamin C and vitamin E on BSO-treated cells were associated with significant ( approximately 70%) decreases in oxidized glutathione (GSSG) and concomitant restoration of the cellular redox status (as indicated by GSH:GSSG ratio) to levels detected in cells not treated with BSO. These results demonstrate a role for vitamin C and vitamin E in maintaining glutathione in its reduced form. The ability of vitamin C and vitamin E in compensations for GSH depletion to protect against H(2)O(2)-induced cell death suggests that GSH, vitamin C, and vitamin E have common targets in their actions against oxidative damage, and supports the preventive or therapeutic use of vitamin C and E to combat age- and pathology-associated declines in GSH. Moreover, levels of these nutrients must be optimized to achieve the maximal benefit.  相似文献   

11.
Sugano N  Ito K  Murai S 《FEBS letters》1999,447(2-3):274-276
Several clinical studies have shown that cyclosporin A (CsA) is effective for treating a variety of chronic inflammatory and autoimmune diseases. Because reactive oxygen species are believed to play a key role in the development of these diseases, causing cell apoptosis, we investigated whether CsA inhibits H2O2-induced apoptosis. Preincubation of human fibroblasts with CsA dose-dependently decreased H2O2-induced apoptosis. Apoptosis suppression by CsA was correlated with the prevention of mitochondrial dysfunction and caspase activation. Thus, our results suggest that the inhibition of apoptosis by CsA may at least partly contribute to the anti-inflammatory effect of CsA.  相似文献   

12.
Shi YL  Benzie IF  Buswell JA 《Life sciences》2002,71(26):3047-3057
Using the single-cell gel electrophoresis ("Comet") assay, we show that tyrosinase-generated L-DOPA oxidation products prevent H2O2-induced oxidative DNA damage in cultured tissue cells. We propose that these oxidation products trigger cellular processes that up-regulate the overall antioxidant status of the cell, and could be incorporated into treatments of pathological conditions associated with elevated oxidative DNA damage and other manifestations of increased oxidative stress.  相似文献   

13.
Superoxide dismutases (SODs) are involved in the protection of cells from oxygen toxicity. However, several papers have reported that the overexpression of CuZn-SOD causes oxidative damage to cells. We investigated a mechanism by which an excess of SODs accelerates oxidative stress. The presence of CuZn-SOD, Mn-SOD or Mn(II) enhanced the frequency of DNA damage induced by hydrogen peroxide (H2O2) and Cu(II), and altered the site specificity of the latter: H2O2 induced Cu(II)-dependent DNA damage with high frequency at the 5'-guanine of poly G sequences; when SODs were added, the frequency of cleavages at thymine and cytosine residues increased. SODs also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by H2O2 and Cu(II). We conclude that SODs may increase carcinogenic risks, e.g. of tumors in Down syndrome.  相似文献   

14.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

15.
Five new phenylpropanoid amides, including N-trans-feruloyl-N′-cis-feruloyl-cadaverine (1), N,N′-trans-diferuloyl-3-oxo-cadaverine (2), N-trans-feruloyl-N′-cis-feruloyl-3-hydroxy-cadaverine (3), N,N′-cis-diferuloyl-3-hydroxy-cadaverine (4), N-trans-p-coumaroyl-N′-trans-feruloyl-3-hydroxy-cadaverine (5), were isolated from Alisma orientalis together with four known analogues. Their structural elucidations were conducted by using 1D and 2D NMR and HRESIMS spectroscopic analyses. The isolated compounds were assayed for their inhibitory activities against HCE-2, anti-oxidant effects, and their protective effects on H2O2-induced damage in human dopaminergic neuroblastoma cells (SH-SY5Y). Compounds 3, 6, and 7 displayed moderate anti-oxidant activities with IC50 values in the range of 36.940.7 μM. Compound 5 showed significant protective activity, while compounds 1, 2, 4, 7, and 8 showed moderate protective activities.  相似文献   

16.
Reactive oxygen species including H2O2 lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H2O2. Treatment of cultured bovine aortic EC (BAEC) with H2O2 (750 μM for 6 h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H2O2 were alike markedly attenuated by pretreatment with S1P (1 μM, 30 min). H2O2 induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H2O2-induced caspase-3 activation. Thus S1P attenuates H2O2-induced apoptosis of cultured BAEC, involving p38 MAP kinase.  相似文献   

17.
Metformin, a first line anti type 2 diabetes drug, has recently been shown to extend lifespan in various species, and therefore, became the first antiaging drug in clinical trial. Oxidative stress due to excess reactive oxygen species (ROS) is considered to be an important factor in aging and related disease, such as Alzheimer's disease (AD). However, the antioxidative effects of metformin and its underlying mechanisms in neuronal cells is not known. In the present study, we showed that metformin, in clinically relevant concentrations, protected neuronal PC12 cells from H2O2-induced cell death. Metformin significantly ameliorated cell death due to H2O2 insult by restoring abnormal changes in nuclear morphology, intracellular ROS, lactate dehydrogenase, and mitochondrial membrane potential induced by H2O2. Hoechst staining assay and flow cytometry analysis revealed that metformin significantly reduced the apoptosis in PC12 cells exposed to H2O2. Western blot analysis further demonstrated that metformin stimulated the phosphorylation and activation of AMP-activated protein kinase (AMPK) in PC12 cells, while application of AMPK inhibitor compound C, or knockdown of the expression of AMPK by specific small interfering RNA or short hairpin RNA blocked the protective effect of metformin. Similar results were obtained in primary cultured hippocampal neurons. Taken together, these results indicated that metformin is able to protect neuronal cells from oxidative injury, at least in part, via the activation of AMPK. As metformin is comparatively cheaper with much less side effects in clinic, our findings support its potential to be a drug for prevention and treatment of aging and aging-related diseases.  相似文献   

18.
19.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:2,自引:0,他引:2  
为探讨Smac/DIABLO在过氧化氢 (H2 O2 )所致C2 C12 肌原细胞凋亡中的作用 ,采用Hoechst 3 3 2 58染色 ,观察H2 O2 (0 5mmol/L)处理C2 C12 肌原细胞不同时间后 ,细胞核形态学改变并计算凋亡核百分率 ,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带 ,利用细胞成分分离后蛋白质印迹分析H2 O2 是否导致Smac/DIABLO从线粒体释放 ,采用Caspase检测试剂盒及蛋白质印迹分析Caspase 3和Caspase 9的活化 ,转染Smac/DIABLO基因 ,观察Smac/DIABLO过表达对H2 O2 所致的C2 C12 肌原细胞凋亡的影响 .结果表明 :H2 O2 处理 1h后 ,Smac/DIABLO从C2 C12 肌原细胞线粒体释放入胞浆 ,2h更明显 ;H2 O2 处理 4h后 ,Caspase 3和Caspase 9活化 ,12h达高峰 ;H2 O2 处理 2 4h后 ,C2 C12 肌原细胞显示特征性的凋亡形态改变 ,凋亡核百分率明显升高 ,DNA电泳出现明显“梯状”条带 .与单纯过氧化氢损伤组相比 ,Smac/DIABLO高表达的C2 C12 肌原细胞经过氧化氢损伤组的Caspase 3和Caspase 9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显 .结果表明 ,H2 O2 可导致Smac/DIABLO从C2 C12 肌原细胞线粒体释放 ,促进Caspase 9和Caspase 3的活化而促进细胞凋亡的发生  相似文献   

20.
The purpose of this study was to characterize the differential sensitivities of various subpopulations of human white blood cells after exposure to H2O2 (an oxidant agent) and bleomycin (a radiomimetic glycopeptide), in vitro, using single-cell gel electrophoresis (SCGE). Human peripheral blood was fractionated into mononuclear cells, which were further separated into monocytes, CD4+ T-cells, CD8+ T-cells, B-cells and natural killer cells (NK cells). The separated fractions were exposed to different doses of H2O2 and bleomycin, and then used to measure levels of induced and basal DNA damage. There was a significant increase in the amount of DNA damage in CD4+ T-cells, CD8+ T-cells, NK cells and B-cells when treated with H2O2 and bleomycin, whereas monocytes had the lowest sensitivity to H2O2 compared with the other cell fractions, but no lower sensitivity to bleomycin. Furthermore, CD4+ T-cells and CD8+ T-cells had the highest levels of basal DNA damage. When basal DNA damage was taken into account, NK cells tended to show a higher sensitivity to H2O2 than CD4+ T-cells, CD8+ T-cells and monocytes. In addition, B-cells, which showed lower sensitivity to H2O2 than CD4+ T-cells, CD8+ T-cells and NK cells when exposed to lower doses of H2O2 (<10 microM), showed higher sensitivity to H2O2 at higher doses (>20 microM). On the other hand, B-cells showed the highest sensitivity to bleomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号