首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylocoagulase-binding region in human prothrombin   总被引:4,自引:0,他引:4  
A staphylocoagulase-binding region in human prothrombin was studied by utilizing several fragments prepared from prothrombin by limited proteolysis. Bovine prothrombin, prethrombin 1, prethrombin 2, and human diisopropylphosphorylated alpha-thrombin strongly inhibited formation of the complex ("staphylothrombin") between human prothrombin and staphylocoagulase, but bovine prothrombin fragment 1 and fragment 2 had no effect on the complex formation, indicating that the binding region of human prothrombin for staphylocoagulase is located in the prethrombin 2 molecule. To identify further the staphylocoagulase-binding region, human alpha-thrombin was cleaved into the NH2-terminal large fragment (Mr = 26,000) and the COOH-terminal fragment (Mr = 16,000) by porcine pancreatic elastase. Of these fragments, the COOH-terminal fragment, which includes Asn-200 to the COOH-terminal end of the alpha-thrombin molecule, partially inhibited the complex formation between staphylocoagulase and human prothrombin. In contrast, the NH2-terminal large fragment did not show any inhibitory effect on the staphylothrombin formation. These results suggest that the staphylocoagulase interacts with human prothrombin through the COOH-terminal region of alpha-thrombin B chain. Other plasma proteins, factor X, factor IX, protein C, protein S, protein Z, all of which are structurally similar to prothrombin, did not inhibit the staphylothrombin formation at all, indicating that a specific interaction site with staphylocoagulase is contained only in the prothrombin molecule.  相似文献   

2.
It is known that protein S, a vitamin K-dependent plasma protein, isolated from a human source, gives a closely spaced doublet on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after reduction and that this heterogeneity in molecular size results from a limited proteolysis of protein S mediated by alpha-thrombin in human species. We found here that alpha-thrombin also rapidly converted single-chain bovine protein S to a nicked form, which consisted of the NH2-terminal segment containing gamma-carboxyglutamic acid and the COOH-terminal large segment bridged by a disulfide linkage(s). These two segments were isolated and chemically characterized after S-alkylation of the nicked protein S. The results suggest that the alpha-thrombin-catalyzed hydrolysis of protein S probably occurs at a peptide linkage (Arg-Ser) located in the NH2-terminal portion. The conversion of single-chain protein S to the nicked form was also mediated by plasma kallikrein and plasmin, in addition to alpha-chymotrypsin and trypsin. However, the alpha-thrombin-catalyzed conversion did not occur when calcium ions were added to the reaction mixture.  相似文献   

3.
Characterization of human angiotensinogen   总被引:2,自引:0,他引:2  
In this study of the physical and chemical properties of human angiotensinogen were determined. Human angiotensinogen is a glycoprotein containing 14% carbohydrate. The molecular weight as determined by sedimentation equilibrium studies was 56,800. A higher molecular weight was obtained on sodium dodecyl sulfate electrophoresis. Ferguson-type plots indicated that angiotensinogen is another glycoprotein which behaves anomalously on sodium dodecyl sulfate electrophoresis. The COOH-terminal amino acid was found to be serine while two NH2-terminal amino acids, alanine and aspartic acid (or asparagine), were detected. The specific angiotensin I content of angiotensinogen preparations can vary considerably with no effect on the apparent homogeneity of the isolated protein. A protein with negligible angiotensin I content has been obtained from a preparation of human angiotensinogen. The COOH-terminal amino acid of this protein was serine while the only NH2-terminal amino acid detected was alanine.  相似文献   

4.
Staphylocoagulase with a molecular weight of 64,000 and subspecies ranging in molecular weight from 36,000 to 64,000 were purified by affinity column chromatography on bovine prothrombin-Sepharose 4B from the culture filtrates of the Staphylococcus aureus strains, st-213 and 104. The samples containing all molecular species from both strains had the same NH2-terminal sequence, Ile-Val-Thr-Lys-Asp-Tyr-Ser-Lys-Glu-, implying that the molecular heterogeneity was due to proteolytic degradation to some extent of the COOH-terminal portion during cultivation or purification. Staphylocoagulase (Mr = 64,000) from strain st-213 formed an active complex, "staphylothrombin," with human prothrombin in a molar ratio of 1 to 1.1. Staphylothrombin was unstable at 37 degrees C and some portions of staphylocoagulase in the complex were rapidly degraded into small fragments, together with the fragmentation of prothrombin into prethrombin 1 and prothrombin fragment 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent fluorography for the products of prothrombin activation by staphylocoagulase in the presence of [3H]diisopropylphosphofluoridate (DFP) demonstrated the formation of a DFP-sensitive active site in the prothrombin molecule, and no cleavage of the Arg-Ile bond linking the A and B chains of alpha-thrombin was found. The enzymatic properties including the pH-dependency of the activity, substrate specificity and behavior towards thrombin inhibitors of staphylothrombin differed from those of alpha-thrombin, although the active site titration of staphylothrombin with p-nitrophenyl-p'-guanidinobenzoate showed 0.95 +/- 0.2 mol of active site/mol of enzyme.  相似文献   

5.
The conversion of the blood coagulation zymogen prothrombin to thrombin is associated with the production of several cleavage intermediates and products. In contrast to earlier studies of prothrombin cleavage in chemically defined systems, the current investigation examines the fragmentation of human prothrombin in normal plasma. Radiolabeled prothrombin was added to platelet-poor relipidated normal human plasma, and clotting was initiated with the addition of Ca(II) and kaolin. Analysis of the radiolabeled prothrombin cleavage products by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate and beta-mercaptoethanol identified a heretofore unobserved product of prothrombin activation with an apparent molecular weight of 45,000. This product was identified as fragment 1 X 2 X 3, the NH2-terminal 286 amino acids of prothrombin. The product was isolated from a prothrombin digest by immunoaffinity chromatography using anti-prothrombin:Ca(II) antibodies and by preparative gel electrophoresis. Its amino-terminal sequence is identical to that of prothrombin. Digestion of this product with either Factor Xa or thrombin yields, at a minimum, fragment 1 X 2 and fragment 1. Amino-terminal sequence analysis of the products obtained by digestion with Factor Xa of the unknown activation product indicated 3 amino acid residues at each cycle consistent with the presence of fragment 1, fragment 2, and fragment 3. To unambiguously identify the COOH-terminal amino acid sequence of the product, its factor Xa digestion products were separated by reverse-phase high performance liquid chromatography. Edman degradation of one peptide revealed the complete sequence of fragment 3. On this basis, we identify the Mr 45,000 polypeptide as fragment 1 X 2 X 3 and indicate that it is a prominent product of prothrombin conversion to thrombin when activation occurs in plasma.  相似文献   

6.
The kinetics of the activation of human prothrombin catalyzed by human prothrombinase was studied using the fluorescent alpha-thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide (DAPA). Prothrombinase proteolytically activates prothrombin to alpha-thrombin by cleavages at Arg273-Thr274 (bond A) and Arg322-Ile323 (bond B). The differential fluorescence properties of DAPA complexed with the intermediates and products of human prothrombin activation were exploited to study the kinetics of the individual bond cleavages in the zymogen. When the catalyst was composed of prothrombinase (human factor Xa, human factor Va, synthetic phospholipid vesicles, and calcium ion), initial velocity studies of alpha-thrombin formation indicated that the kinetic constants for the cleavage of bonds A or B were similar to the constants that were obtained for the overall reaction (bonds A + B). The progress of the reaction was also monitored by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results indicated that the activation of human prothrombin catalyzed by prothrombinase proceeded exclusively via the formation of meizothrombin (bond B-cleaved) as an intermediate. Kinetic studies of the cofactor dependence of the rates of cleavage of the individual bonds indicated that, in the absence of the cofactor, cleavage at bond B would constitute the rate-limiting step in prothrombin activation. Progress curves for prothrombin activation catalyzed by prothrombinase and monitored using the fluorophore DAPA were typified by the appearance of a transient maximum, indicating the formation of meizothrombin as an intermediate. When factor Xa alone was the catalyst, progress curves were characterized by an initial burst phase, suggesting the rapid production of prethrombin 2 (bond A-cleaved) followed by its slow conversion to alpha-thrombin. Gel electrophoresis followed by autoradiography was used to confirm these results. Collectively, the results indicate that the activation of human prothrombin via the formation of meizothrombin as an intermediate is a consequence of the association of the cofactor, human factor Va, with the enzyme, human factor Xa, on the phospholipid surface.  相似文献   

7.
Incubation of prothrombin on cultured human umbilical vein endothelial cells with factor Xa and calcium ions induced the activation of prothrombin. The mechanism of prothrombin activation was analyzed on sodium dodecyl sulfate gels using immuno- and amido-blotting techniques. It was demonstrated that meizothrombin was formed as an intermediate in prothrombin activation on the endothelial cell surface. In addition, considerable amounts of meizothrombin des-fragment-1 accumulated during prothrombin activation and were not further converted to thrombin. Although preincubation of the endothelial cells with thrombin did not influence the formation of meizothrombin, addition of hirudin to the prothrombin activation mixture inhibited the formation of meizothrombin and meizothrombin des-fragment-1 almost completely. This indicated that the activity of endogenously formed thrombin influenced the formation of meizothrombin via a feedback mechanism. The increased formation of meizothrombin and accumulation of meizothrombin des-fragment-1 in a latter phase of prothrombin activation points to a regulatory mechanism in hemostasis which subdues the formation of the procoagulant alpha-thrombin.  相似文献   

8.
Two populations of tryptic peptides were isolated from bovine estrus cervical mucin (BCM). One contained all the carbohydrate, and was rich in threonine and serine. These glycopeptides had, like the whole mucin, alanine as their NH2-terminal residues. Their COOH-terminal residues were arginine. The second population of peptides was rich in carboxylic amino acids, contained two cysteinyl residues, and had, like the whole mucin, leucine as COOH-terminal residues. Their NH2-terminal residues were aspartic acid. The sum of the residues of one glycopeptide plus one cysteinyl-containing peptide corresponded to the number of residues constituting a putative subunit of BCM. The amino acid sequence of the major cysteinyl peptide was determined. A cluster of hydrophobic residues was found in the COOH-terminal region. The amino acid sequences of two of the glycopeptides were found identical up to the 22nd residue. The small number of tryptic peptides, as well as the large amount of NH2- and COOH-terminal amino acids found in BCM indicate that this glycoprotein is made up of similar subunits with a molecular weight of about 22,000, one of the glycopeptides representing the NH2-terminal part, and one of the cysteinyl peptides, the COOH-terminal part. However, the existence of these subunits was not confirmed by ultracentrifugation of BCM in dithiothreitol and sodium dodecyl sulfate. BCM was polydisperse and had a mean molecular weight of 507,000.  相似文献   

9.
Purified human C9 was treated separately with three proteolytic enzymes: trypsin, plasmin, and alpha-thrombin, and the digestion products were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Trypsin initially cleaved the Mr = 71,000 C9 to produce a Mr = 47,000 fragment plus numerous smaller fragments and prolonged digestion reduced the molecule to small polypeptides. Plasmin produced a Mr = 37,000 fragment which was stable to further digestion, plus fragments smaller than Mr = 10,000. Human alpha-thrombin cleaved C9 (7.8% carbohydrate) at a single internal site to produce a Mr = 37,000 fragment (11.3% carbohydrate) and a Mr = 34,000 fragment (3.9% carbohydrate). Statistical analysis of the amino acid compositions of the fragments and alkaline polyacrylamide gel electrophoresis showed that C9 is highly amphiphilic; the Mr = 34,000 fragment contains a majority of the acidic amino acids and migrates rapidly on alkaline gels; the Mr = 37,000 fragment is hydrophobic with a slow electrophoretic mobility. The two fragments remain noncovalently associated, but were separated by sodium dodecyl sulfate-hydroxylapatite chromatography. The NH2-terminal sequence analysis of native C9, of alpha-thrombin-cleaved C9, and for the isolated fragments showed that the acidic Mr = 34,000 fragment is the NH2-terminal C9a domain and the more hydrophobic Mr = 37,000 fragment is the carboxyl-terminal C9b domain. Hemolytic activity of C9 was unaffected by alpha-thrombin cleavage.  相似文献   

10.
Human thrombins. Production, evaluation, and properties of alpha-thrombin.   总被引:32,自引:0,他引:32  
Human alpha-thrombin, the thromboplastin activation product of prothrombin with high clotting and esterase activity, was produced from Cohn Fraction III paste. The procedure started with 0.4 to 3.2 kg of frozen paste and was completed in 2 or 3 days. Some 23 g of thrombin were recorded for 65 quantitated preparations made from 11 lots of Fraction III paste. These preparations were obtained at protein concentrations of 3.9 +/- 1.3 mg/ml with a yield of 340 +/- 110 mg/kg of paste, which represented 48 +/- 14% of the clotting potential extracted as prothrombin. They had specific clotting activities of 2.8 +/- 0.4 U.S. (NIH) units/microng of protein and titrated to 88 +/- 8% active with p-nitrophenyl-p'-guanidinobenzoate (NPGB). Those (N - 29) examined by labeling with [14C]diisopropyl phosphorofluoridate (iPr2P-F) and electrophoresing in sodium dodecyl sulfate (SDS)-polyacrylamide gels were found to contain only (N = 4) or predominantly alpha-thrombin (97 +/- 3%) and corresponding amounts of ists degradation product, beta-thrombin (2.6 +/- 3.1%). No plasmin(ogen), prothrombin complex factors (II, VII, IX, IXalpha, X, Xalpha), or prothrombin fragments were detected in representative preparations. As produced in 0.75 M NaCl, pH approximately 6, thrombin was stable for approximately 1 week at 4 degrees and for greater than 1 year at less than or equal to 50 degrees; freeze-dried thrombin stored at 4 degrees for greater than 1 year displayed stable clotting activity and no vial to vial variation, permitting its use for reference purposes. Human thrombin generated by Taipan snake venom activation was compared with that produced by rapid thromboplastin activation: after treatment with [14C]iPr2P-F, greater than 95% of the label in both thrombins migrated at the same rate during electrophoresis in SDS; identical pairs of NH2-terminal residues were released in three consecutive Edman degradation cycles.  相似文献   

11.
The interactions of smooth muscle myosin and its light chains have been examined by incubating sodium dodecyl sulfate-polyacrylamide gels of myosin with radioactively labeled regulatory or essential light chains. The technique involves sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fixation with methanol and acetic acid followed by an extensive series of washes. The gel is incubated overnight with labeled light chains in the presence of bovine serum albumin and then washed extensively to remove unbound protein. Following staining and destaining, the gel is autoradiographed to reveal which protein bands have bound light chain. The myosin heavy chain was able to rebind labeled regulatory or essential light chains despite the harsh procedure described above. By fragmenting the myosin heavy chain proteolytically, we were able to determine the binding site for both types of light chains to be within the 26,000-Da COOH-terminal segment of smooth muscle subfragment 1 (S-1) or the 20,000-Da COOH-terminal segment of skeletal muscle S-1. The extent of binding was 0.1-0.4 mol of light chain/mol of S-1 heavy chain. No binding was observed to portions of the myosin molecule which do not contain this segment such as myosin rod, light meromyosin, S-2, or the NH2-terminal 75,000-Da segment of S-1.  相似文献   

12.
The Na(+)-Ca2+ exchange carrier was purified from bovine cardiac tissue by a new procedure which relies principally upon anion-exchange chromatography. The purified protein exhibited two major bands on sodium dodecyl sulfate gels, at 120 and 160 kDa. The relative intensities of the two bands could be altered by variations in the procedures used for preparing the samples for electrophoresis, suggesting that they represent two different conformational states of the same protein. The NH2-terminal amino acid sequences of the 120- and 160-kDa bands were identical and agreed closely with a region of the deduced amino acid sequence of the recently cloned canine cardiac exchanger. The NH2-terminal sequence was preceded in the deduced sequence by a 32-residue segment that exhibited the characteristics of a signal sequence; the initial amino acid in the NH2-terminal sequence followed immediately after the predicted cleavage site for the signal sequence. The Na(+)-Ca2+ exchanger appears to be unique among membrane transport carriers in encoding a cleaved signal sequence. The characteristics of the sequences flanking the first putative transmembrane segment of the mature exchanger suggest that the signal sequence is necessary to ensure the correct topological orientation of the exchanger in the membrane.  相似文献   

13.
Antibodies against synthetic peptides derived from the DNA sequence of human cytochrome c oxidase subunit II (COII) have been tested for their capacity to immunoprecipitate the whole enzyme complex. Antibodies against the COOH-terminal undecapeptide of COII (anti-COII-C), when incubated with a Triton X-100 mitochondrial lysate from HeLa cells pulse-labeled with [35S]methionine under conditions selective for mitochondrial protein synthesis and chased for 18 h in unlabeled medium, precipitated the pulse-labeled three largest subunits (mitochondrially synthesized) of cytochrome c oxidase in proportions close to equimolarity. Antibodies against the NH2-terminal decapeptide of COII (anti-COII-N), although equally reactive as the anti-COII-C antibodies with the sodium dodecyl sulfate-solubilized COII, did not precipitate any of the three labeled subunits from the Triton X-100 mitochondrial lysate. In other experiments, all the 13 subunits which have been identified in the mammalian cytochrome c oxidase were immunoprecipitated from a Triton X-100 mitochondrial lysate of cells long-term labeled with [35S]methionine by anti-COII-C antibodies, but not by anti-COII-N antibodies. By contrast, in immunoblots of total mitochondrial proteins dissociated with sodium dodecyl sulfate, the anti-COII-C antibodies reacted specifically only with COII. These results strongly suggest that, in the native cytochrome c oxidase complex, the epitope recognized by the anti-COII-C antibodies is in the COII subunit and that, therefore, in such complex, the COOH-terminal peptide of COII is exposed to antibodies, whereas the NH2-terminal peptide is not accessible.  相似文献   

14.
The domain structure of human complement protein C9 was investigated by determining the functional activities of the NH2-terminal (C9a) and COOH-terminal (C9b) fragments obtained by cleavage of C9 with alpha-thrombin. The two fragments were separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured by dialysis against buffers containing zwitterionic detergents. The C9b fragment produced membranolytic activities in three independent assays. First, it produced single, ion-conducting channels of varying conductances in planar lipid membranes. Most of the channels had an average conductance of 11 picoSiemens and an average lifetime of about 30 s. The channels showed lipid specificity and a 3-fold preference for conducting K+ over Na+. Second, the fragment also caused specific marker release from liposomes which was inhibitable by a C9b-specific monoclonal antibody, and third, it lysed erythrocytes in the absence of a fully assembled C5b-8 complex. The isolated C9a fragment did not produce single channels in planar lipid membranes but was also effective in releasing markers from liposomes and in lysing erythrocytes. Secondary structure predictions indicate the presence of several amphiphilic, "surface-seeking" segments in the primary structure of C9 which are mainly alpha-helices in C9b and beta-sheets in C9a. These results may indicate the presence of surface-binding domains in the NH2-terminal half and channel-forming domains in the COOH-terminal portion of native, monomeric C9.  相似文献   

15.
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.  相似文献   

16.
We have raised antisera against human prothrombin activation fragment F2 in rabbits and have chromatographed the respective immunoglobulin G fractions on prothrombin-Sepharose, Pr1-Sepharose, and F2-Sepharose immunoadsorbents. The specific antibody population obtained was utilized to construct a double antibody radioimmunoassay capable of measuring as little as 0.8 ng/ml of this component. Our studies suggest that the immunoreactive site defined by this antibody population is most probably located within the negatively charged COOH-terminal region of F2. The immunologic expression of this area is unaffected by denaturation or reduction-alkylation of F2 as well as by attachment of polypeptide to the NH2-terminal of this component. However, the presence of covalently bound polypeptide at the COOH-terminal of F2 reduces its immunologic reactivity by 300- to 400-fold. Prothrombin, Pr1, and Pr*1, which contain the F2 region as part of their covalent structure, are at least 4000 to 7000 times less immunoreactive than F2 on a molar basis. Conversion of these components to thrombin as well as activation fragments generates the theoretically predicted level of immunoreactivity. Masking of the immunoreactive site within these zymogens is due to two phenomena. Firstly, covalent attachment of polypeptides on the COOH-terminal of the F2 segment significantly depresses the reactivity of this region. Secondly, a critical S--S bridge aids in the sequenstration of the immunoreactive site. This cross-link may facilitate interactions between the COOH-terminal of the F2 segment and other regions of the zymogen.  相似文献   

17.
We report experiments describing the isolation and characterization of ornithine transcarbamylase from normal human liver. Our preparative procedure employs initial centrifugation and heat steps, intermediate batch-wise adsorption and desorption from ion exchange resins and column chromatographic elution from hydroxylapatite, and final purification by gel filtration chromatography and glycerol density gradient centrifugation. The enzyme, purified 580-fold in this way, is homogeneous as judged by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human ornithine transcarbamylase has a molecular weight of 114,000 and is a trimer of identical 38,000 molecular weight subunits. It focuses at pH 6.8 as a single band on polyacrylamide gel, has a COOH-terminal phenylalanine, an NH2-terminal glycine, an apparent Km for L-ornithine of 0.4 mM and for carbamyl phosphate of 0.16 mM, and a pH optimum of 7.7. The enzyme is quite stable over a temperature range from -50 degrees to +60 degrees C and over the pH range from 5.8 to 8.2. The quaternary structure and amino acid composition of the human enzyme are very similar to those of its bovine homologue.  相似文献   

18.
Surfactant protein D (SP-D) is a carbohydrate-binding glycoprotein containing a collagen-like domain that is synthesized by alveolar type II epithelial cells. The complete primary structure of rat SP-D has been determined by sequencing of a cloned cDNA. The protein consists of three regions: an NH2-terminal segment of 25 amino acids, a collagen-like domain consisting of 59 Gly-X-Y repeats, and a COOH-terminal carbohydrate recognition domain of 153 amino acids. There are 6 cysteine residues present in rat SP-D: 2 in the NH2-terminal noncollagenous segment and 4 in the COOH-terminal carbohydrate-binding domain. The collagenous domain contains one possible N-glycosylation site. The protein is preceded by a cleaved, NH2-terminal signal peptide. SP-D shares considerable homology with the C-type mammalian lectins. Hybridization analysis demonstrates that rat SP-D is encoded by a 1.3-kilobase mRNA which is abundant in lung and highly enriched in alveolar type II cells. Extensive homology exists between rat SP-D and bovine conglutinin.  相似文献   

19.
Human recombinant single chain urokinase-type plasminogen activator (recombinant scu-PA) and a hybrid between human tissue-type plasminogen activator (t-PA) and scu-PA, obtained by ligation of cDNA fragments encoding the NH2-terminal region (amino acids 1-67) of t-PA and the COOH-terminal region (amino acids 136-411) of scu-PA, were expressed in a mammalian cell system. The proteins were purified from conditioned culture media containing 2% fetal calf serum by chromatography on zinc chelate-Sepharose, immunoadsorption chromatography on an insolubilized murine monoclonal antibody directed against urokinase, benzamidine-Sepharose chromatography, and Ultrogel AcA 44 gel filtration. Between 180 and 230 micrograms of the purified proteins were obtained per liter of conditioned medium, with a yield of approximately 18% and a purification factor of 720-1900. On sodium dodecyl sulfate gel electrophoresis under reducing conditions, the proteins migrated as single bands with approximate Mr 50,000 for recombinant scu-PA and Mr 43,000 for the t-PA/scu-PA hybrid. Following conversion to urokinase with plasmin, the proteins had a specific amidolytic activity comparable to that of natural scu-PA. Both proteins activated plasminogen directly with Km = 0.53 and 1.4 microM and k2 = 0.0034 and 0.0027 s-1, respectively. Both proteins did not bind specifically to fibrin and had a comparable degree of fibrin selectivity as measured in a system composed of a whole human 125I-fibrin-labeled plasma clot suspended in human plasma. It is concluded that this chimeric protein, consisting of the NH2-terminal "finger-like" domain of t-PA and the COOH-terminal region of scu-PA, has very similar enzymatic properties as compared to scu-PA, but has not acquired the fibrin affinity of t-PA.  相似文献   

20.
The partial covalent structure of bovine beta-thrombin has been determined by the use of automated Edman degradation and carboxypeptidase digestion of the component polypeptide chains separated by gel filtration following either reduction and carboxymethylation or performic acid oxidation. beta-Thrombin has been found to contain three peptide chains derived by proteolysis of the parent alpha-thrombin molecule. The A chain of alpha-thrombin has been cleaved at two points yielding a peptide (A1 chain) which contains 17 amino acids, beginning with threonine 14 and ending with lysine 30. The B chain of alpha-thrombin has been cleaved at two positions to yield a B1 chain which begins with the NH2-terminal isoleucine and terminates with lysine 65 and a B2 chain which begins with lysine 74 and continues through COOH-terminal serine 259. The A1 chain and B2 chain are linked by a disulfide bridge. Although there is no evidence for a covalent bond between the B1 chain and the B2-A1 chains, the B1 chain is tightly bound to the remainder of the molecule, for separation is achieved only under denaturing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号