共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in Pinus banksiana 总被引:2,自引:0,他引:2
Pinus banksiana seedlings were grown for 9 months in enclosures in greenhouses at CO2 concentrations of 350 or 750 μmol mol−1 with either low (0.005 to 0. 3 W m−2 ) or high (0.25 to 0. 90 W m−2 ) ultraviolet-B (UV-B) irradiances. Total seedling dry weight decreased with high UV treatment but was unaffected by CO2 enrichment. High UV treatment also shifted biomass partitioning in favor of leaf production. Both CO2 and UV treatments decreased the dark respiration rate and light compensation point. High UV light inhibited photosynthesis at 350 but not at 750 μmol mol−1 CO2 due to a UV induced increase in ribulose-1, 5-bisphosphate carboxylase/oxygenase efficiency and ribulose-1, 5-bisphosphate regeneration. Stomatal density was increased by high UV irradiance but was unchanged by CO2 enrichment. 相似文献
3.
Andrew G. Peterson J. Timothy Ball YiqI. Luo Christopher B. Field † Peter B. Reich ‡ Peter S. Curtis § Kevin L. Griffin ¶ Carla A. Gunderson Richard J. Norby David T. Tissue †† Manfred Forstreuter ‡‡ AnA. Rey §§ Christoph S. Vogel¶¶ Cmeal participants 《Global Change Biology》1999,5(3):331-346
Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem, and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO2 but much less at elevated CO2. This study was designed to (i) assess whether the A–N relationship was more similar for species within than between community and vegetation types, and (ii) examine how growth at elevated CO2 affects the A–N relationship. Data were obtained for 39 C3 species grown at ambient CO2 and 10 C3 species grown at ambient and elevated CO2. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO2 did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO2 increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A–N relationship for deciduous trees expressed on a leaf-mass basis was not altered by elevated CO2, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO2 increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO2. Generalizations about the effect of elevated CO2 on the A–N relationship, and differences between pines and deciduous trees will be enhanced as more data become available. 相似文献
4.
Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland 总被引:16,自引:0,他引:16
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000. 相似文献
5.
The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background 总被引:36,自引:5,他引:36
AGPase, ADP glucose pyrophosphorylaseGS, glutamine synthetaseGOGAT, glutamate : oxoglutarate amino transferaseNADP-ICDH, NADP-dependent isocitrate dehydrogenaseNR, nitrate reductaseOPPP, oxidative pentose phosphate pathway3PGA, glycerate-3-phosphatePEPCase, phosphoenolpyruvate carboxylaseRubisco, ribulose-1,5-bisphosphate carboxylase/oxygenaseSPS, sucrose phosphate-synthaseThis review first summarizes the numerous studies that have described the interaction between the nitrogen supply and the response of photosynthesis, metabolism and growth to elevated [CO2]. The initial stimulation of photosynthesis in elevated [CO2] is often followed by a decline of photosynthesis, that is typically accompanied by a decrease of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), an accumulation of carbohydrate especially starch, and a decrease of the nitrogen concentration in the plant. These changes are particularly marked when the nitrogen supply is low, whereas when the nitrogen supply is adequate there is no acclimation of photosynthesis, no major decrease in the internal concentration of nitrogen or the levels of nitrogen metabolites, and growth is stimulated markedly. Second, emerging evidence is discussed that signals derived from nitrate and nitrogen metabolites such as glutamine act to regulate the expression of genes involved in nitrate and ammonium uptake and assimilation, organic acid synthesis and starch accumulation, to modulate the sugar-mediated repression of the expression of genes involved in photosynthesis, and to modulate whole plant events including shoot–root allocation, root architecture and flowering. Third, increased rates of growth in elevated [CO2] will require higher rates of inorganic nitrogen uptake and assimilation. Recent evidence is discussed that an increased supply of sugars can increase the rates of nitrate and ammonium uptake and assimilation, the synthesis of organic acid acceptors, and the synthesis of amino acids. Fourth, interpretation of experiments in elevated [CO2] requires that the nitrogen status of the plants is monitored. The suitability of different criteria to assess the plant nitrogen status is critically discussed. Finally the review returns to experiments with elevated [CO2] and discusses the following topics: is, and if so how, are nitrate and ammonium uptake and metabolism stimulated in elevated [CO2], and does the result depend on the nitrogen supply? Is acclimation of photosynthesis the result of sugar-mediated repression of gene expression, end-product feedback of photosynthesis, nitrogen-induced senescence, or ontogenetic drift? Is the accumulation of starch a passive response to increased carbohydrate formation, or is it triggered by changes in the nutrient status? How do changes in sugar production and inorganic nitrogen assimilation interact in different conditions and at different stages of the life history to determine the response of whole plant growth and allocation to elevated [CO2]? 相似文献
6.
TOBIAS RÜTTING TIM J. CLOUGH CHRISTOPH MÜLLER MARK LIEFFERING PAUL C. D. NEWTON 《Global Change Biology》2010,16(9):2530-2542
The increasing concentration of atmospheric carbon dioxide (CO2) is expected to lead to enhanced competition between plants and microorganisms for the available nitrogen (N) in soil. Here, we present novel results from a 15N tracing study conducted with a sheep‐grazed pasture soil that had been under 10 years of CO2 enrichment. Our study aimed to investigate changes in process‐specific gross N transformations in a soil previously exposed to an elevated atmospheric CO2 (eCO2) concentration and to examine indicators for the occurrence of progressive nitrogen limitation (PNL). Our results show that the mineralization–immobilization turnover (MIT) was enhanced under eCO2, which was driven by the mineralization of recalcitrant organic N. The retention of N in the grassland was enhanced by increased dissimilatory NO3? reduction to NH4+ (DNRA) and decreased NH4+ oxidation. Our results indicate that heterotrophic processes become more important under eCO2. We conclude that higher MIT of recalcitrant organic N and enhanced N retention are mechanisms that may alleviate PNL in grazed temperate grassland. 相似文献
7.
Temperate forest responses to carbon dioxide, temperature and nitrogen: a model analysis 总被引:3,自引:1,他引:3
The ITE Edinburgh Forest Model, which describes diurnal and seasonal changes in the pools and fluxes of C, N and water in a fully coupled forest–soil system, was parametrized to simulate a managed conifer plantation in upland Britain. The model was used to examine (i) the transient effects on forest growth of an IS92a scenario of increasing [CO2] and temperature over two future rotations, and (ii) the equilibrium (sustainable) effects of all combinations of increases in [CO2] from 350 to 550 and 750 μmol mol?1, mean annual temperature from 7.5 to 8.5 and 9.5°C and annual inputs of 20 or 40 kg N ha?1. Changes in underlying processes represented in the model were then used to explain the responses. Eight conclusions were supported by the model for this forest type and climate.
- 1 Increasing temperatures above 3°C alone may cause forest decline owing to water stress.
- 2 Elevated [CO2] can protect trees from water stress that they may otherwise suffer in response to increased temperature.
- 3 In N-limiting conditions, elevated [CO2] can increase allocation to roots with little increase in leaf area, whereas in N-rich conditions elevated [CO2] may not increase allocation to roots and generally increases leaf area.
- 4 Elevated [CO2] can decrease water use by forests in N-limited conditions and increase water use in N-rich conditions.
- 5 Elevated [CO2] can increase forest productivity even in N-limiting conditions owing to increased N acquisition and use efficiency.
- 6 Rising temperatures (along with rising [CO2]) may increase or decrease forest productivity depending on the supply of N and changes in water stress.
- 7 Gaseous losses of N from the soil can increase or decrease in response to elevated [CO2] and temperature.
- 8 Projected increases in [CO2] and temperature (IS92a) are likely to increase net ecosystem productivity and hence C sequestration in temperate forests.
8.
Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide 总被引:4,自引:0,他引:4
The effect of elevated atmospheric CO2 concentration on the growth of shoots, roots, mycorrhizas and extraradical mycorrhizal mycelia of pine (Pinus silvestris L.) was examined. Two and a half-month-old seedlings were inoculated axenically with the mycorrhizal fungus Pisolithus tincto-rius (Pers.) by a method allowing rapid mycorrhiza formation in Petri dishes. The plants were then cultivated for 3 months in growth chambers with daily concentrations of 350 and 600 μmol mol?1 CO2 during the day. Whereas plants harvested after 1 and 2 months did not differ appreciably between ambient and increased CO2 concentrations, after 3 months they developed a considerably higher root biomass (%57%) at elevated CO2, but did not increase significantly in root length. The mycorrhizal fungus Pisolithus tinctorius, which depended entirely on the plant assimilates in the model system, grew much faster at increased CO2: 3 times more mycorrhizal root clusters were formed and the extraradical mycelium produced had twice the biomass at elevated as at ambient CO2. No difference in shoot biomass was found between the two treatments after 91 d. However, since the total water consumption of seedlings was similar in the two treatments, the water use efficiency was appreciably higher for the seedlings at increased CO2 because of the higher below-ground biomass. 相似文献
9.
Interactive effects of elevated carbon dioxide and growth temperature on photosynthesis in cotton leaves 总被引:5,自引:0,他引:5
Cotton (Gossypium hirsutum L., cv DPL 5415) plants were grown in naturally lit environment chambers at day/night temperature regimes of 26/18 (T-26/18), 31/23 (T-31/23) and 36/28 °C (T-36/28) and CO2 concentrations of 350 (C-350), 450 (C-450) and 700 L L-1 (C-700). Net photosynthesis rates, stomatal conductance, transpiration, RuBP carboxylase activity and the foliar contents of starch and sucrose were measured during different growth stages. Net CO2 assimilation rates increased with increasing CO2 and temperature regimes. The enhancement of photosynthesis was from 24 mol CO2 m-2 s-1 (with C-350 and T-26/18) to 41 mol m-2 s-1 (with C-700 and T-36/28). Stomatal conductance decreased with increasing CO2 while it increased up to T-31/23 and then declined. The interactive effects of CO2 and temperature resulted in a 30% decrease in transpiration. Although the leaves grown in elevated CO2 had high starch and sucrose concentrations, their content decreased with increasing temperature. Increasing temperature from T-26/18 to 36/28 increased RuBP carboxylase activity in the order of 121, 172 and 190 mol mg-1 chl h-1 at C-350, C-450 and C-700 respectively. Our data suggest that leaf photosynthesis in cotton benefited more from CO_2 enrichment at warm temperatures than at low growth temperature regimes. 相似文献
10.
Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration 总被引:3,自引:0,他引:3
MARK A. SUTTON DAVID SIMPSON†‡ PETER E. LEVY ROGNVALD I. SMITH STEFAN REIS MARCEL van OIJEN WIM de VRIES § 《Global Change Biology》2008,14(9):2057-2063
In a recent study, Magnani et al. report how atmospheric nitrogen deposition drives stand-lifetime net ecosystem productivity (NEPav ) for midlatitude forests, with an extremely high C to N response (725 kg C kg−1 wet-deposited N for their European sites). We present here a re-analysis of these data, which suggests a much smaller C : N response for total N inputs. Accounting for dry, as well as wet N deposition reduces the C : N response to 177 : 1. However, if covariance with intersite climatological differences is accounted for, the actual C : N response in this dataset may be <70 : 1. We then use a model analysis of 22 European forest stands to simulate the findings of Magnani et al. Multisite regression of simulated NEPav vs. total N deposition reproduces a high C : N response (149 : 1). However, once the effects of intersite climatological differences are accounted for, the value is again found to be much smaller, pointing to a real C : N response of about 50–75 : 1. 相似文献
11.
12.
We investigated the effect of elevated [CO2] (700 μmol mol?1), elevated temperature (+2 °C above ambient) and decreased soil water availability on net photosynthesis (Anet) and water relations of one‐year old potted loblolly pine (Pinus taeda L.) seedlings grown in treatment chambers with high fertility at three sites along a north‐south transect covering a large portion of the species native range. At each location (Blairsville, Athens and Tifton, GA) we constructed four treatment chambers and randomly assigned each chamber one of four treatments: ambient [CO2] and ambient temperature, elevated [CO2] and ambient temperature, ambient [CO2] and elevated temperature, or elevated [CO2] and elevated temperature. Within each chamber half of the seedlings were well watered and half received much less water (1/4 that of the well watered). Measurements of net photosynthesis (Anet), stomatal conductance (gs), leaf water potential and leaf fluorescence were made in June and September, 2008. We observed a significant increase in Anet in response to elevated [CO2] regardless of site or temperature treatment in June and September. An increase in air temperature of over 2 °C had no significant effect on Anet at any of the sites in June or September despite over a 6 °C difference in mean annual temperature between the sites. Decreased water availability significantly reduced Anet in all treatments at each site in June. The effects of elevated [CO2] and temperature on gs followed a similar trend. The temperature, [CO2] and water treatments did not significantly affect leaf water potential or chlorophyll fluorescence. Our findings suggest that predicted increases in [CO2] will significantly increase Anet, while predicted increases in air temperature will have little effect on Anet across the native range of loblolly pine. Potential decreases in precipitation will likely cause a significant reduction in Anet, though this may be mitigated by increased [CO2]. 相似文献
13.
MARK J. HOVENDEN P. C. D. NEWTON† R. A. CARRAN† P. THEOBALD† K. E. WILLS J. K. VANDER SCHOOR A. L. WILLIAMS Y. OSANAI 《Global Change Biology》2008,14(5):1018-1024
Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 °C warming prevented this effect while warming without CO2 enrichment did not significantly affect N availability. These findings indicate that warming could play an important role in the impact of [CO2] on ecosystem N cycling, potentially overturning CO2‐induced effects in some ecosystems. 相似文献
14.
Hyvönen R Agren GI Linder S Persson T Cotrufo MF Ekblad A Freeman M Grelle A Janssens IA Jarvis PG Kellomäki S Lindroth A Loustau D Lundmark T Norby RJ Oren R Pilegaard K Ryan MG Sigurdsson BD Strömgren M van Oijen M Wallin G 《The New phytologist》2007,173(3):463-480
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store. 相似文献
15.
Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest 总被引:14,自引:0,他引:14
PETER M. GROFFMAN JANET P. HARDY† CHARLES T. DRISCOLL‡ TIMOTHY J. FAHEY§ 《Global Change Biology》2006,12(9):1748-1760
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2 O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2 O, methane (CH4 ) and carbon dioxide (CO2 ) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2 O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2 O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2 O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2 O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2 O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2 O fluxes from northern hardwood forests. 相似文献
16.
Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics 总被引:23,自引:0,他引:23
The effect of elevated CO2 on the carbon and nitrogen distribution within perennial ryegrass (L. perenne L.) and its influence on belowground processes were investigated. Plants were homogeneously 14C-labelled in two ESPAS growth chambers in a continuous 14C-CO2 atmosphere of 350 and 700 L L-1 CO2 and at two soil nitrogen regimes, in order to follow the carbon flow through all plant and soil compartments.After 79 days, elevated CO2 increased the total carbon uptake by 41 and 21% at low (LN) and high nitrogen (HN) fertilisation, respectively. Shoot growth remained unaffected, whereas CO2 enrichment stimulated root growth by 46% and the root/soil respiration by 111%, irrespective of the nitrogen concentration. The total 14C-soil content increased by 101 and 28% at LN and HN, respectively. The decomposition of the native soil organic matter was not affected either by CO2 or by the nitrogen treatment.Elevated CO2 did not change the total nitrogen uptake of the plant either at LN or at HN. Both at LN and HN elevated CO2 significantly increased the total amount of nitrogen taken up by the roots and decreased the absolute and relative amounts translocated to the shoots.The amount of soil nitrogen immobilised by micro-organisms and the size of the soil microbial biomass were not affected by elevated CO2, whereas both were significantly increased at the higher soil N content.Most striking was the 88% increase in net carbon input into the soil expressed as: 14C-roots plus total 14C-soil content minus the 12C-carbon released by decomposition of native soil organic matter. The net carbon input into the soil at ambient CO2 corresponded with 841 and 1662 kg ha-1 at LN and HN, respectively. Elevated CO2 increased these amounts with an extra carbon input of 950 and 1056 kg ha-1. Combined with a reduced decomposition rate of plant material grown at elevated CO2 this will probably lead to carbon storage in grassland soils resulting in a negative feed back on the increasing CO2 concentration of the atmosphere. 相似文献
17.
Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest 总被引:27,自引:5,他引:27
Peter M. Groffman Charles T. Driscoll Timothy J. Fahey Janet P. Hardy Ross D. Fitzhugh Geraldine L. Tierney 《Biogeochemistry》2001,56(2):191-213
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3
–)concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3
– levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3
– levels to increase evenwith no increase in net mineralization or nitrification. 相似文献
18.
Roles of dominant understory Sasa bamboo in carbon and nitrogen dynamics following canopy tree removal in a cool‐temperate forest in northern Japan
下载免费PDF全文

Karibu Fukuzawa Hideaki Shibata Kentaro Takagi Fuyuki Satoh Takayoshi Koike Kaichiro Sasa 《Plant Species Biology》2015,30(2):104-115
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment. 相似文献
19.
XIN CHEN † CONG TU† MICHAEL G. BURTON‡ DOROTHY M. WATSON‡ KENT O. BURKEY‡§ SHUIJIN HU† 《Global Change Biology》2007,13(6):1238-1249
Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte‐free and endophyte‐infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 μmol mol−1) and elevated CO2 (ambient + 330 μmol mol−1). A 15N isotope tracer was used to quantify the mycorrhiza‐mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced 15N and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2. 相似文献
20.
Sicher RC 《Photosynthesis research》2001,68(3):193-201
Effects of atmospheric carbon dioxide enrichment on nitrogen metabolism were studied in barley primary leaves (Hordeum vulgare L. cv. Brant). Seedlings were grown in chambers under ambient (36 Pa) and elevated (100 Pa) carbon dioxide and were fertilized daily with complete nutrient solution providing 12 millimolar nitrate and 2.5 millimolar ammonium. Foliar nitrate and ammonium were 27% and 42% lower (P ≤ 0.01) in the elevated compared to ambient carbon dioxide treatments, respectively. Enhanced carbon dioxide affected leaf ammonium levels by inhibiting photorespiration. Diurnal variations of total nitrate were not observed in either treatment. Total and Mg2+inhibited nitrate reductase activities per gram fresh weight were slightly lower (P ≤ 0.01) in enhanced compared to ambient carbon dioxide between 8 and 15 DAS. Diurnal variations of total nitrate reductase activity in barley primary leaves were similar in either treatment except between 7 and 10 h of the photoperiod when enzyme activities were decreased (P ≤ 0.05) by carbon dioxide enrichment. Glutamate was similar and glutamine levels were increased by carbon dioxide enrichment between 8 and 13 DAS. However, both glutamate and glutamine were negatively impacted by elevated carbon dioxide when leaf yellowing was observed 15 and 17 DAS. The above findings showed that carbon dioxide enrichment produced only slight modifications in leaf nitrogen metabolism and that the chlorosis of barley primary leaves observed under enhanced carbon dioxide was probably not attributable to a nutritionally induced nitrogen limitation. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献