首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti(4+)-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO(2) enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti(4+)-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 μg of a HeLa cell lysate digest. In comparison, ~ 2000 unique phosphopeptides could be identified by Ti(4+)-IMAC with HFP and close to 3000 by TiO(2). We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti(4+)-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 μg of triple dimethyl labeled MCF-7 digest. This analysis led to the identification of over 9,000 unique phosphorylation sites. The use of three peptide activation methods confirmed that ETD is best capable of sequencing multiply charged peptides. Collectively, our data show that the combination of SCX and Ti(4+)-IMAC is particularly advantageous for phosphopeptides with multiple basic residues.  相似文献   

2.
Large scale characterization of phosphoproteins requires highly specific methods for purification of phosphopeptides because of the low abundance of phosphoproteins and substoichiometry of phosphorylation. Enrichment of phosphopeptides from complex peptide mixtures by IMAC is a popular way to perform phosphoproteome analysis. However, conventional IMAC adsorbents with iminodiacetic acid as the chelating group to immobilize Fe(3+) lack enough specificity for efficient phosphoproteome analysis. Here we report a novel IMAC adsorbent through Zr(4+) chelation to the phosphonate-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) polymer beads. The high specificity of Zr(4+)-IMAC adsorbent was demonstrated by effectively enriching phosphopeptides from the digest mixture of phosphoprotein (alpha- or beta-casein) and bovine serum albumin with molar ratio at 1:100. Zr(4+)-IMAC adsorbent was also successfully applied for the analysis of mouse liver phosphoproteome, resulting in the identification of 153 phosphopeptides (163 phosphorylation sites) from 133 proteins in mouse liver lysate. Significantly more phosphopeptides were identified than by the conventional Fe(3+)-IMAC approach, indicating the excellent performance of the Zr(4+)-IMAC approach. The high specificity of Zr(4+)-IMAC adsorbent was found to mainly result from the strong interaction between chelating Zr(4+) and phosphate group on phosphopeptides. Enrichment of phosphopeptides by Zr(4+)-IMAC provides a powerful approach for large scale phosphoproteome analysis.  相似文献   

3.
Han G  Ye M  Zhou H  Jiang X  Feng S  Jiang X  Tian R  Wan D  Zou H  Gu J 《Proteomics》2008,8(7):1346-1361
The mixture of phosphopeptides enriched from proteome samples are very complex. To reduce the complexity it is necessary to fractionate the phosphopeptides. However, conventional enrichment methods typically only enrich phosphopeptides but not fractionate phosphopeptides. In this study, the application of strong anion exchange (SAX) chromatography for enrichment and fractionation of phosphopeptides was presented. It was found that phosphopeptides were highly enriched by SAX and majority of unmodified peptides did not bind onto SAX. Compared with Fe(3+) immobilized metal affinity chromatography (Fe(3+)-IMAC), almost double phosphopeptides were identified from the same sample when only one fraction was generated by SAX. SAX and Fe(3+)-IMAC showed the complementarity in enrichment and identification of phosphopeptides. It was also demonstrated that SAX have the ability to fractionate phosphopeptides under gradient elution based on their different interaction with SAX adsorbent. SAX was further applied to enrich and fractionate phosphopeptides in tryptic digest of proteins extracted from human liver tissue adjacent to tumorous region for phosphoproteome profiling. This resulted in the highly confident identification of 274 phosphorylation sites from 305 unique phosphopeptides corresponding to 168 proteins at false discovery rate (FDR) of 0.96%.  相似文献   

4.
Mass spectrometric analysis of proteolytically derived phosphopeptides has developed into a widespread technique for the identification of phosphorylated amino acids. Using liquid chromatography-electrospray ionization tandem mass spectrometry, 14 phosphorylation sites were identified on Xenopus laevis His6-Aurora A, a highly conserved regulator of centrosome maturation and cell division. These included seven novel phosphorylation sites, Ser-12, Thr-21, Thr-103, Ser-116, Thr-122, Tyr-155, and Thr-294, as well as the previously identified regulatory sites, Ser-53, Thr-295, and Ser-349. The identification of these novel phosphorylation sites will be important for future studies aimed at elucidating the mechanisms of Aurora A regulation by phosphorylation. Furthermore, we demonstrate that a "kinase-inactive" mutant of Aurora A, K169R, still retains 10% of activity of the wild-type enzyme in vitro along with occupancy of Thr-295 and Ser-12. However, mutation of Asp-281 to Ala completely abolishes activity of the enzyme and should therefore be used preferentially as a genuine kinase-dead construct. Because of the abundance of phosphorylated residues on His6-Aurora A, we found this protein to be an ideal tool for the characterization of immobilized metal-affinity chromatography (IMAC) as a method for phosphopeptide enrichment from complex mixtures. We present a detailed analysis of the binding and elution properties of both the phosphopeptides and unphosphorylated peptides of His6-Aurora A to Fe3+-IMAC before and after methyl esterification. Moreover, we demonstrate a significant difference in enrichment of phosphopeptides when different resins are used for Fe3+-IMAC and characterize the strengths and limitations of this methodology for the study of phosphoproteomics.  相似文献   

5.
Global profiling of phosphoproteomes has proven to be a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH gradient elution technique for enhanced phosphopeptide identification in conjunction with titanium dioxide chromatography. Using this process, we demonstrated its superiority to the traditional “one-pot” strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pHs 9.2 and 9.4. High-resolution separation of multiply phosphorylated peptides was primarily achieved using elution ranges greater than pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values.  相似文献   

6.
To further improve the selectivity and throughput of phosphopeptide analysis for the samples from real-time cell lysates, here we demonstrate a highly efficient method for phosphopeptide enrichment via newly synthesized magnetite microparticles and the concurrent mass spectrometric analysis. The magnetite microparticles show excellent magnetic responsivity and redispersibility for a quick enrichment of those phosphopeptides in solution. The selectivity and sensitivity of magnetite microparticles in phosphopeptide enrichment are first evaluated by a known mixture containing both phosphorylated and nonphosphorylated proteins. Compared with the titanium dioxide-coated magnetic beads commercially available, our magnetite microparticles show a better specificity toward phosphopeptides. The selectively-enriched phosphopeptides from tryptic digests of β-casein can be detected down to 0.4 fmol μl−1, whereas the recovery efficiency is approximately 90% for monophosphopeptides. This magnetite microparticle-based affinity technology with optimized enrichment conditions is then immediately applied to identify all possible phosphorylation sites on a signal protein isolated in real time from a stress-stimulated mammalian cell culture. A large fraction of peptides eluted from the magnetic particle enrichment step were identified and characterized as either single- or multiphosphorylated species by tandem mass spectrometry. With their high efficiency and utility for phosphopeptide enrichment, the magnetite microparticles hold great potential in the phosphoproteomic studies on real-time samples from cell lysates.  相似文献   

7.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

8.
Accurate determination of protein phosphorylation is challenging, particularly for researchers who lack access to a high-accuracy mass spectrometer. In this study, multiple protocols were used to enrich phosphopeptides, and a rigorous filtering workflow was used to analyze the resulting samples. Phosphopeptides were enriched from cultured rat renal proximal tubule cells using three commonly used protocols and a dual method that combines separate immobilized metal affinity chromatography (IMAC) and titanium dioxide (TiO2) chromatography, termed dual IMAC (DIMAC). Phosphopeptides from all four enrichment strategies were analyzed by liquid chromatography-multiple levels of mass spectrometry (LC-MSn) neutral-loss scanning using a linear ion trap mass spectrometer. Initially, the resulting MS2 and MS3 spectra were analyzed using PeptideProphet and database search engine thresholds that produced a false discovery rate (FDR) of <1.5% when searched against a reverse database. However, only 40% of the potential phosphopeptides were confirmed by manual validation. The combined analyses yielded 110 confidently identified phosphopeptides. Using less-stringent initial filtering thresholds (FDR of 7–9%), followed by rigorous manual validation, 262 unique phosphopeptides, including 111 novel phosphorylation sites, were identified confidently. Thus, traditional methods of data filtering within widely accepted FDRs were inadequate for the analysis of low-resolution phosphopeptide spectra. However, the combination of a streamlined front-end enrichment strategy and rigorous manual spectral validation allowed for confident phosphopeptide identifications from a complex sample using a low-resolution ion trap mass spectrometer.  相似文献   

9.
Immobilized metal affinity chromatography (IMAC) based on Fe (3+) or Ga (3+) chelation is the most widely employed technique for the enrichment of phosphopeptides from biological samples prior to mass spectrometric analysis. An IMAC resin geared mainly toward phosphoprotein enrichment, Pro-Q Diamond, has been assessed for its utility in phosphopeptide isolation. Using both single phosphoprotein tryptic digests of beta-casein and ovalbumin and synthetic mixtures composed of tryptic digests of phosphorylated and nonphosphorylated protein standards, the selectivity and sensitivity of Pro-Q Diamond resin in an immobilized metal affinity-reversed phase microcolumn format were compared to an alternate titanium dioxide approach. The biphasic microcolumn method was found to be superior to metal oxide-based phosphopeptide capture in biological samples of increasing complexity. The lower limit of mass spectrometric detection for the immobilized metal affinity-reversed phase microcolumn approach was determined to be 10 pmol of beta-casein monophosphorylated peptide in 20 muL of a solution of human serum protein digest (from 200 mug total serum protein after digestion and desalting).  相似文献   

10.
IMAC can be used to selectively enrich phosphopeptides from complex peptide mixtures, but co-retention of acidic peptides together with the failure to retain some phosphopeptides restricts the general utility of the method. In this study Fe(III)-IMAC was qualitatively and quantitatively assessed using a panel of phosphopeptides, both synthetic and derived from proteolysis of known phosphoproteins, to identify the causes of success and failure in the application of this technique. Here we demonstrate that, as expected, peptides with a more acidic amino acid content are generally more efficiently purified and detected by MALDI-MS after Fe(III)-IMAC than those with a more basic content. Modulating the loading buffer used for Fe(III)-IMAC significantly affects phosphopeptide binding and suggests that conformational factors that lead to steric hindrance and reduced accessibility to the phosphate are important. The use of 1,1,1,3,3,3-hexafluoroisopropanol is shown here to significantly improve Fe(III)-IMAC enrichment and subsequent detection of phosphopeptides by MALDI-MS.  相似文献   

11.
蒙书红  常蕾  柳峰松  徐平  张瑶 《微生物学报》2022,62(10):3768-3783
【目的】本研究以分枝菌酸小杆菌(Mycolicibacterium smegmatis)为研究对象,探索适于原核微生物理想的磷酸化富集方法。【方法】我们比较了二氧化钛(TiO2)、Fe3+-NTA和Ti4+螯合在磷酸酯修饰的固相微球(Ti4+-IMAC) 3种不同富集方法磷酸化肽段的富集效率,并用不同分辨率的质谱仪评估富集稳定性。【结果】Ti4+-IMAC富集效率最高,磷酸化位点数是TiO2或Fe3+-NTA方法的7倍以上;TiO2和Fe3+-NTA方法富集到的磷酸化位点数相差不大,与已报道的用TiO2方法富集的磷酸化位点数目接近。Ti4+-IMAC富集结果稳定性很好,高分辨率Lumos质谱仪鉴定到的磷酸化位点数是Velos的2.6倍。【结论】本研究较高效地实现了分枝菌酸小杆菌磷酸化事件的鉴定,共鉴定到2 280个磷酸化蛋白、10 880个磷酸化肽段及4 433个可信磷酸化位点,有望用于其他微生物的磷酸化蛋白质组学研究。  相似文献   

12.
Recent advances in instrument control and enrichment procedures have enabled us to quantify large numbers of phosphoproteins and record site-specific phosphorylation events. An intriguing problem that has arisen with these advances is to accurately validate where phosphorylation events occur, if possible, in an automated manner. The problem is difficult because MS/MS spectra of phosphopeptides are generally more complicated than those of unmodified peptides. For large scale studies, the problem is even more evident because phosphorylation sites are based on single peptide identifications in contrast to protein identifications where at least two peptides from the same protein are required for identification. To address this problem we have developed an integrated strategy that increases the reliability and ease for phosphopeptide validation. We have developed an off-line titanium dioxide (TiO(2)) selective phosphopeptide enrichment procedure for crude cell lysates. Following enrichment, half of the phosphopeptide fractionated sample is enzymatically dephosphorylated, after which both samples are subjected to LC-MS/MS. From the resulting MS/MS analyses, the dephosphorylated peptide is used as a reference spectrum against the original phosphopeptide spectrum, in effect generating two peptide spectra for the same amino acid sequence, thereby enhancing the probability of a correct identification. The integrated procedure is summarized as follows: 1) enrichment for phosphopeptides by TiO(2) chromatography, 2) dephosphorylation of half the sample, 3) LC-MS/MS-based analysis of phosphopeptides and corresponding dephosphorylated peptides, 4) comparison of peptide elution profiles before and after dephosphorylation to confirm phosphorylation, and 5) comparison of MS/MS spectra before and after dephosphorylation to validate the phosphopeptide and its phosphorylation site. This phosphopeptide identification represents a major improvement as compared with identifications based only on single MS/MS spectra and probability-based database searches. We investigated an applicability of this method to crude cell lysates and demonstrate its application on the large scale analysis of phosphorylation sites in differentiating mouse myoblast cells.  相似文献   

13.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   

14.
蛋白质的磷酸化与去磷酸化过程,调控着包括信号转换、基因表达、细胞周期等诸多细胞过程。因此,对蛋白质磷酸化修饰的分析是蛋白质组研究中的重要内容。但由于磷酸化蛋白的丰度较低,难以用质谱直接检测。为了解决这个问题,改善质谱对磷酸肽的信号响应,需要对磷酸化蛋白质或磷酸肽进行富集。目前主要的富集方法包括免疫沉淀、固相金属离子亲和色谱、金属氧化物/氢氧化物亲和色谱等。  相似文献   

15.
Haizhu Lin  Chunhui Deng 《Proteomics》2016,16(21):2733-2741
In this work, we first immobilized tin(IV) ion on polydopamine‐coated magnetic graphene (magG@PDA) to synthesize Sn4+‐immobilized magG@PDA (magG@PDA‐Sn4+) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3O4, good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn4+ and phosphopeptides. The enrichment performance of magG@PDA‐Sn4+ toward phosphopeptides from digested β‐casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA‐Ti4+. The results showed high selectivity and sensitivity of the Sn4+‐IMAC material toward phosphopeptides, as good as the Ti4+‐IMAC material. Finally, magG@PDA‐Sn4+ was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI‐TOF MS and nano‐LC‐ESI‐MS/MS. The results indicated that the as‐synthesized Sn4+‐IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti4+‐IMAC material and expand the phosphopeptide coverage enriched by the single Ti4+‐IMAC material, demonstrating the broad application prospects of magG@PDA‐Sn4+ in phosphoproteome research.  相似文献   

16.
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource Facilities (ABRF) were detected and verified by means of the 80 Da mass shift achieved by on-column dephosphorylation.  相似文献   

17.
18.
A new method for enrichment of phosphopeptides in complex mixtures derived by proteolytic digestion of biological samples has been developed. The method is based on calcium phosphate precipitation of the phosphopeptides prior to further enrichment with established affinity enrichment methods. Calcium phosphate precipitation combined with phosphopeptide enrichment using Fe(III) IMAC provided highly selective enrichment of phosphopeptides. Application of the method to a complex peptide sample derived from rice embryo resulted in more than 90% phosphopeptides in the enriched sample as determined by mass spectrometry. Introduction of a two-step IMAC enrichment procedure after calcium phosphate precipitation resulted in observation of an increased number of phosphopeptides.  相似文献   

19.
Enrichment is essential for phosphoproteome analysis because phosphorylated proteins are usually present in cells in low abundance. Recently, titanium dioxide (TiO2) has been demonstrated to enrich phosphopeptides from simple peptide mixtures with high specificity; however, the technology has not been optimized. In the present study, significant non-specific bindings were observed when proteome samples were applied to TiO2 columns. Column wash with an NH4Glu solution after loading peptide mixtures significantly increased the efficiency of TiO2 phosphopeptide enrichment with a recovery of up to 84%. Also, for proteome samples, more than a 2-fold increase in unique phosphopeptide identifications has been achieved. The use of NH4Glu for a TiO2 column wash does not significantly reduce the phosphopeptide recovery. A total of 858 phosphopeptides corresponding to 1034 distinct phosphosites has been identified from HeLa cells using the improved TiO2 enrichment procedure in combination with data-dependent neutral loss nano-RPLC-MS2-MS3 analysis. While 41 and 35% of the phosphopeptides were identified only by MS2 and MS3, respectively, 24% was identified by both MS2 and MS3. Cross-validation of the phosphopeptide assignment by MS2 and MS3 scans resulted in the highest confidence in identification (99.5%). Many phosphosites identified in this study appear to be novel, including sites from antigen Ki-67, nucleolar phosphoprotein p130, and Treacle protein. The study also indicates that evaluation of confidence levels for phosphopeptide identification via the reversed sequence database searching strategy might underestimate the false positive rate.  相似文献   

20.
Immobilized metal ion affinity chromatography (IMAC) is a commonly used technique for phosphoprotein analysis due to its specific affinity for phosphopeptides. In this study, Fe3+-immobilized magnetic nanoparticles (Fe3+-IMAN) with an average diameter of 15 nm were synthesized and applied to enrich phosphopeptides. Compared with commercial microscale IMAC beads, Fe3+-IMAN has a larger surface area and better dispersibility in buffer solutions which improved the specific interaction with phosphopeptides. Using tryptic digests of the phosphoprotein alpha-casein as a model sample, the number and signal-to-noise ratios of the phosphopeptides identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following Fe3+-IMAN enrichment greatly increased relative to results obtained with direct MALDI-TOFMS analysis. The lowest detectable concentration is 5 x 10(-11) M for 100 microL of pure standard phosphopeptide (FLTEpYVATR) following Fe3+-IMAN enrichment. We presented a phosphopeptide enrichment scheme using simple Fe3+-IMAN and also a combined approach of strong cation exchange chromatography and Fe3+-IMAN for phosphoproteome analysis of the plasma membrane of mouse liver. In total, 217 unique phosphorylation sites corresponding to 158 phosphoproteins were identified by nano-LC-MS/MS. This efficient approach will be very useful in large-scale phosphoproteome analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号