首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macrophages harvested from the peritoneal cavities of rats release a neutrophil chemotactic factor (MNCF) in response to stimulation with Gram-negative bacterial lipopolysaccharide (LPS). MNCF has been shown to be active in rats treated with dexamethasone, a glucocorticoid that usually inhibits the neutrophil migration induced in this species by interleukin (IL)-1, tumour necrosis factor alpha (TNFalpha), IL-8, C5a and leukotriene B(4) (LTB(4)). Here we report that macrophages harvested from peritoneal cavities of mice, and stimulated in vitro with LPS, also release a factor that induces neutrophil migration in dexamethasone-treated animals. This chemotactic activity was neutralized by the incubation of the LPS-stimulated macrophage supernatants with a purified polyclonal IgG anti-mouse TNFalpha. In addition, significant amounts of TNF were detected in the supernatants. The neutrophil migration induced by intraperitoneal administration of recombinant murine TNFalpha was also unaffected by pretreatment of the mice with dexamethasone. Moreover, neutrophil migration induced by intraperitoneal injection of LPS was completely blocked by pretreatment of the mice with a monoclonal antibody against murine TNFalpha. In conclusion, our results support the hypothesis that, in contrast to the role of TNF in rats (where it indirectly induces neutrophil migration), in mice, it may be an important mediator in the recruitment of neutrophils to inflammatory sites.  相似文献   

2.
The use of adeno-associated virus (AAV) to package gene-targeting vectors as single-stranded linear molecules has led to significant improvements in mammalian gene-targeting frequencies. However, the molecular basis for the high targeting frequencies obtained is poorly understood, and there could be important mechanistic differences between AAV-mediated gene targeting and conventional gene targeting with transfected double-stranded DNA constructs. Conventional gene targeting is thought to occur by the double-strand break (DSB) model of homologous recombination, as this can explain the higher targeting frequencies observed when DSBs are present in the targeting construct or target locus. Here we compare AAV-mediated gene-targeting frequencies in the presence and absence of induced target site DSBs. Retroviral vectors were used to introduce a mutant lacZ gene containing an I-SceI cleavage site and to efficiently deliver the I-SceI endonuclease, allowing us to carry out these studies with normal and transformed human cells. Creation of DSBs by I-SceI increased AAV-mediated gene-targeting frequencies 60- to 100-fold and resulted in a precise correction of the mutant lacZ reporter gene. These experiments demonstrate that AAV-mediated gene targeting can result in repair of a DNA DSB and that this form of gene targeting exhibits fundamental similarities to conventional gene targeting. In addition, our findings suggest that the selective creation of DSBs by using viral delivery systems can increase gene-targeting frequencies in scientific and therapeutic applications.  相似文献   

3.
4.
Physiologic concentrations of prostaglandin E2 but not A1 or F1 α enhance human neutrophil migration in response to a chemotactic stimulus while higher concentrations decrease the response. Enhanced migration requires the presence of PGE2 and is not observed when PMNs are preincubated with optimal doses of PGE2. Furthermore, maximal enhancement is only observed when low concentrations of chemotactic factor are utilized to stimulate PMNs. Experiments indicate that PGE2 acts to enhance the chemokinetic response of human PMNs to chemotactic factors. These data support a role for physiologic concentrations of PGE2 in the control of PMN function at an inflammatory site.  相似文献   

5.
The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans has been shown to interfere with neutrophil migration. Although several receptors have been implied to mediate this process, the structural perspectives are unknown. Here, we assess the contribution of 6-O-acetylation and xylose substitution of the (1-->3)-alpha-d-mannan backbone of GXM, the variable structural features of GXM, to the interference with neutrophil migration. We compare chemically deacetylated GXM and acetyl- or xylose-deficient GXM from genetically modified strains with wild-type GXM in their ability to inhibit the different phases of neutrophil migration. Additionally, we verify the effects of de-O-acetylation on neutrophil migration in vivo. De-O-acetylation caused a dramatic reduction of the inhibitory capacity of GXM in the in vitro assays for neutrophil chemokinesis, rolling on E-selectin and firm adhesion to endothelium. Genetic removal of xylose only marginally reduced the ability of GXM to reduce firm adhesion. In vivo, chemical deacetylation of GXM significantly reduced its ability to interfere with neutrophil recruitment in a model of myocardial ischemia (65% reduction vs a nonsignificant reduction in tissue myeloperoxidase, respectively). Our findings indicate that 6-O-acetylated mannose of GXM is a crucial motive for the inhibition of neutrophil recruitment.  相似文献   

6.
High concentrations of free heme found during hemolytic events or cell damage leads to inflammation, characterized by neutrophil recruitment and production of reactive oxygen species, through mechanisms not yet elucidated. In this study, we provide evidence that heme-induced neutrophilic inflammation depends on endogenous activity of the macrophage-derived lipid mediator leukotriene B(4) (LTB(4)). In vivo, heme-induced neutrophil recruitment into the peritoneal cavity of mice was attenuated by pretreatment with 5-lipoxygenase (5-LO) inhibitors and leukotriene B(4) receptor 1 (BLT1) receptor antagonists as well as in 5-LO knockout (5-LO(-/-)) mice. Heme administration in vivo increased peritoneal levels of LTB(4) prior to and during neutrophil recruitment. Evidence that LTB(4) was synthesized by resident macrophages, but not mast cells, included the following: 1) immuno-localization of heme-induced LTB(4) was compartmentalized exclusively within lipid bodies of resident macrophages; 2) an increase in the macrophage population enhanced heme-induced neutrophil migration; 3) depletion of resident mast cells did not affect heme-induced LTB(4) production or neutrophil influx; 4) increased levels of LTB(4) were found in heme-stimulated peritoneal cavities displaying increased macrophage numbers; and 5) in vitro, heme was able to activate directly macrophages to synthesize LTB(4). Our findings uncover a crucial role of LTB(4) in neutrophil migration induced by heme and suggest that beneficial therapeutic outcomes could be achieved by targeting the 5-LO pathway in the treatment of inflammation associated with hemolytic processes.  相似文献   

7.
8.
Heparin potentiates in vivo neutrophil migration induced by IL-8   总被引:1,自引:0,他引:1  
Chemokine IL-8 attracts neutrophils by a haptotactic gradient, made possible by its interaction with proteoglycans of the extracellular matrix. Heparan sulfate, but not heparin, potentiates the attraction exerted in vitro by IL-8. In the present study we first confirmed this in vitro phenomenon, observing that IL-8 activity was potentiated 100% by heparan sulfate, but not by heparin. Then, we evaluated the interference of heparan sulfate or heparin on in vivo neutrophil migration induced by IL-8. The activity of rat IL-8 (3.5 g/animal) preincubated with heparan sulfate (50 g/animal) or heparin (77 g/animal) was assayed on the rat dorsal air pouch. Contrary to in vitro experiments, heparin, but not heparan sulfate, potentiated the in vivo IL-8 activity two-fold. We investigated the relationship between this observation and that reported by others, that IL-8-induced migration depends on the presence of mast cells, which contain heparin-rich granules. We studied the neutrophil migration induced by IL-8 (3.5 g/animal) into the rat peritoneal cavity depleted of mast cells. Neutrophil migration was reduced by 32% when compared to that observed in normal animals. The response of depleted rats was reconstituted by preincubation of IL-8 with heparin (77 g/animal). These data suggest that heparin released from cytoplasmic granules may be the contribution of mast cells to IL-8-induced neutrophil migration.  相似文献   

9.
Pactolus is a cell surface protein expressed by murine neutrophils. Pactolus is similar to the beta integrins, except it lacks a functional metal ion-dependent adhesion site domain and is expressed without an alpha-chain partner. The majority of the Pactolus protein is held within the cell in dense granules in a highly glycosylated form. This intracellular form of Pactolus can be released to the cell surface following inflammatory activation or ligation of Pactolus on the cell surface. In addition, intracellular Pactolus translocates to the neutrophil surface following induction of apoptosis. Neutrophil activation studies suggest that Pactolus does not serve as an activating or phagocytic receptor for the neutrophil. To further define the function of Pactolus, a Pactolus-null mouse was generated. Pactolus-deficient animals mature appropriately and possess normal numbers of neutrophils, display appropriate migration into sites of inflammation, and combat introduced infections efficiently. These data suggest that Pactolus does not function as a neutrophil phagocytic or adhesion receptor, but may instead serve as a sugar-bearing ligand for lectin recognition by other cells.  相似文献   

10.
Neutrophil transepithelial migration is a central component of many inflammatory diseases of the gastrointestinal, respiratory and urinary tracts, and correlates with disease symptoms. In vitro modeling with polarized intestinal epithelial monolayers has shown that neutrophil transepithelial migration can influence crucial epithelial functions, ranging from barrier maintenance to electrolyte secretion. Studies have also demonstrated a dynamic involvement of the epithelium in modulating neutrophil transepithelial migration. Characterization of the molecular interactions between neutrophils and epithelial cells has revealed that transepithelial migration is dependent on the neutrophil β2 integrin CD11b/CD18, and does not appear to involve adhesive interactions with the selectins or intercellular adhesion molecule-1. Recent studies have implicated another transmembrane glycoprotein, CD47, as a crucial component of the transepithelial migration response. While the precise function of CD47 is not known, current evidence suggests that CD47-dependent events occur after CD11b/CD18-mediated neutrophil adhesion to the epithelium. This review will highlight key features of the current understanding of the molecular events important in neutrophil migration across epithelial surfaces.  相似文献   

11.
Although arachidonic acid cascade has been shown to be involved in sepsis, little is known about the role of PGD(2) and its newly found receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), on the septic response. Severe sepsis is associated with the failure of neutrophil migration. To investigate whether CRTH2 influences neutrophil recruitment and the lethality during sepsis, sepsis was induced by cecal ligation and puncture (CLP) surgery in mice. CRTH2 knockout (CRTH2(-/-)) mice were highly resistant to CLP-induced sepsis, which was associated with lower bacterial load and lower production of TNF-α, IL-6, and CCL3. IL-10, an anti-inflammatory cytokine, was higher in CRTH2(-/-) mice, blunting CLP-induced lethality in CRTH2(-/-) mice. Neutrophil accumulation in the peritoneum was more pronounced after CLP in CRTH2(-/-) mice, which was associated with higher CXCR2 levels in circulating neutrophils. Furthermore, sepsis caused a decrease in the level of acetylation of histone H3, an activation mark, at the CXCR2 promoter in wild-type neutrophils, suggesting that CXCR2 expression levels are epigenetically regulated. Finally, both pharmacological depletion of neutrophils and inhibition of CXCR2 abrogated the survival benefit in CRTH2(-/-) mice. These results demonstrate that genetic ablation of CRTH2 improved impaired neutrophil migration and survival during severe sepsis, which was mechanistically associated with epigenetic-mediated CXCR2 expression. Thus, CRTH2 is a potential therapeutic target for polymicrobial sepsis.  相似文献   

12.
Cryptococcal capsular Ags induce the production of proinflammatory cytokines in patients with cryptococcal meningitis. Despite this, their cerebrospinal fluid typically contains few neutrophils. Capsular glucuronoxylomannan is generally considered to mediate the inhibition of neutrophil extravasation. In the current study, culture supernatant harvested from the nonglucuronoxylomannan-producing strain CAP67 was found to be as potent as supernatant from wild-type strains in preventing migration. We identified capsular mannoprotein (MP)-4 as the causative agent. Purified MP-4 inhibited migration of neutrophils toward platelet-activating factor, IL-8, and fMLP, probably via a mechanism involving chemoattractant receptor cross-desensitization, as suggested by its direct chemotactic activity. Supporting this hypothesis, MP-4 elicited Ca(2+) transients that were inhibited by preincubation with either fMLP, IL-8, or C5a, but not platelet-activating factor, and vice versa. Moreover, MP-4 strongly decreased the neutrophil surface expression of L-selectin and induced shedding of TNF receptors p55/p75, whereas CD11b/18 increased. Finally, MP-4 was clearly detectable in both serum and cerebrospinal fluid of patients suffering from cryptococcal meningitis. These findings identify MP-4 as a novel capsular Ag prematurely activating neutrophils and desensitizing them toward a chemoattractant challenge.  相似文献   

13.
Neutrophil migration across infected mucosal surfaces is chemokine dependent, but the role of chemokine receptors has not been investigated. In this study, chemokine receptors were shown to be expressed by epithelial cells lining the urinary tract, and to play an essential role for neutrophil migration across the mucosal barrier. Uroepithelial CXCR1 and CXCR2 expression was detected in human urinary tract biopsies, and in vitro infection of human uroepithelial cell lines caused a dramatic increase in both receptors. As a consequence, there was higher binding of IL-8 to the cells and the IL-8-dependent neutrophil migration across the infected epithelial cell layers was enhanced. Abs to IL-8 or to the CXCR1 receptor inhibited this increase by 60% (p<0.004), but anti-CXCR2 Abs had no effect, suggesting that CXCR1 was the more essential receptor in this process. Similar observations were made in the mouse urinary tract, where experimental infection stimulated epithelial expression of the murine IL-8 receptor, followed by a rapid flux of neutrophils into the lumen. IL-8 receptor knockout mice, in contrast, failed to express the receptor, their neutrophils were unable to cross the epithelial barrier, and accumulated in massive numbers in the tissues. These results demonstrate that epithelial cells express CXC receptors and that infection increases receptor expression. Furthermore, we show that CXCR1 is required for neutrophil migration across infected epithelial cell layers in vitro, and that the murine IL-8 receptor is needed for neutrophils to cross the infected mucosa of the urinary tract in vivo.  相似文献   

14.
The development of cell polarity in response to chemoattractant stimulation in human polymorphonuclear neutrophils (PMNs) is characterized by the rapid conversion from round to polarized morphology with a leading lamellipod at the front and a uropod at the rear. During PMN polarization, the microtubule (MT) array undergoes a dramatic reorientation toward the uropod that is maintained during motility and does not require large-scale MT disassembly or cell adhesion to the substratum. MTs are excluded from the leading lamella during polarization and motility, but treatment with a myosin light chain kinase inhibitor (ML-7) or the actin-disrupting drug cytochalasin D causes an expansion of the MT array and penetration of MTs into the lamellipod. Depolymerization of the MT array before stimulation caused 10% of the cells to lose their polarity by extending two opposing lateral lamellipodia. These multipolar cells showed altered localization of a leading lamella-specific marker, talin, and a uropod-specific marker, CD44. In summary, these results indicate that F-actin- and myosin II-dependent forces lead to the development and maintenance of MT asymmetry that may act to reinforce cell polarity during PMN migration.  相似文献   

15.
KM+, a lectin purified from Artocarpus integrifolia seeds, is an attractant for neutrophils, and has properties similar to fMLP, IL-8 and MNCF. The endogenous lectin MNCF, inhibits carrageenan-induced neutrophil migration when intravenously administered in rats. In an attempt to mimic the activity of MNCF with KM+, we determined the effect of intravenous (iv) injection of KM+ (5 g) on neutrophil migration to the peritoneal cavity of Wistar rats induced by KM+ (50 g, intraperitoneal, ip), fMLP (5 ng, ip) and carrageenan (300 g, ip). Initially we evaluated the effect of the time interval between intravenous and intraperitoneal administration of KM+. The intervals ranged from 20 to 120 min and progressively stronger inhibition was observed with increasing time intervals up to a maximum of 60 min, with effect decreasing thereafter. With injections at the optimum interval of 60 min, we observed that KM+ inhibited KM+- and carrageenan-induced neutrophil migration by 72%, and fMLP-induced migration by 56%. White cell counts for Wistar rats that only received KM+iv, performed at 0 to 120 min intervals after injection, revealed early neutropenia lasting 60 min, followed by a marked increase in circulating neutrophils that reached a maximum of twice the initial levels within 90 min and after 120 min returned to levels near to that observed before intravenous administration of KM+. These results indicate that when KM+ is present in the intravascular space, it produces an inhibitory effect on neutrophil migration similar to that caused by the intravenous administration of other chemoattractants, regardless of whether they act through a mechanism independent of carbohydrate recognition, as does IL-8, or are dependent on carbohydrate recognition, like MNCF.  相似文献   

16.
Effects of novel leukotrienes on neutrophil migration   总被引:2,自引:0,他引:2  
Fibronectin was chromatographed on immobilized alkanes of various chain lengths. No binding of the protein to the hydrophobic matrix was observed with alkanes containing from 3–7 methylene groups; the protein bound, however, to immobilized alkanes with 8 or 10 methylene groups. Fibronectin could be quantitatively eluted from commercial Octylsepharose with a non-ionic detergent. A gelatin-based plasma expander did not interfere with the binding. Many proteolytic fibronectin fragments also bound to a hydrophobic matix. The results show that fibronectin posesses at least one hydrophobic binding site.  相似文献   

17.
Proteolytic degradation of basement membrane influences the cell behavior during important processes, such as inflammations, tumorigenesis, angiogenesis, and allergic diseases. In this study, we have investigated the action of gelatinase A (MMP-2) on collagen IV, the major constituent of the basement membrane. We have compared quantitatively its action on the soluble forms of collagen IV extracted with or without pepsin (from human placenta and from Engelbreth-Holm-Swarm [EHS] murine sarcoma, respectively). The catalytic efficiency of MMP-2 is dramatically reduced in the case of the EHS murine sarcoma with respect to the human placenta, probably due to the much tighter packing of the network which renders very slow the speed of the rate-limiting step. We have also enquired on the role of MMP-2 domains in processing collagen IV. Addition of the isolated collagen binding domain, corresponding to the fibronectin-like domain of whole MMP-2, greatly in hibits the cleavage process, demonstrating that MMP-2 interacts with collagen type IV preferentially through its fibronectin-like domain. Conversely, the removal of the hemopexin-like domain, using only the catalytic domain of MMP-2, has only a limited effect on the catalytic efficiency toward collagen IV, indicating that the missing domain does not have great relevance for the overall mechanism. Finally, we have investigated the effect of MMP-2 proteolytic activity ex vivo. MMP-2 action negatively affects the neutrophils' migration across type IV coated membranes and this is likely related to the production of lower molecular weight fragments that impair the cellular migration.  相似文献   

18.
Leukocytes are recruited at the site of infection or injury as a part of the innate immune system, and play a very critical role in fighting the invading microorganisms and/or healing wounds. Neutrophils are the most abundant leukocytes in healthy humans and are the principal cell types that arrive at the target site in the initial phase of this process. Previous studies from our laboratory have shown that the amino acid glutamate is a novel chemotaxis-inducing factor for human neutrophils. In this report, we provide evidences that clearly demonstrate that the glutamate-induced neutrophil cell migration activity is mediated by the class I metabotropic glutamate receptors. Our results further show that a specific integrin β2 (ITG β2) receptor, namely LFA1 (αLβ2) is activated upon glutamate treatment and is required for further downstream signaling events leading to increased migration of human neutrophil cells. Following glutamate stimulation, LFA1 is phosphorylated by the Src Kinase Lck at the Y735 residue, which triggers a downstream signaling cascade leading to activation of PI3K, Syk, Vav and finally the Rho family GTPase, Rac2. Interestingly, glutamate was previously found to be present in elevated levels in wound fluid. Furthermore, glutamate level was also found to go up following inflammation. Taken together, our study suggests a novel mode of neutrophil recruitment to the target site following an infection or injury.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号