首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

2.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis.  相似文献   

3.
聚羟基烷酸酯 (PHA) 改性研究进展   总被引:3,自引:0,他引:3  
本文简述了生物制造聚羟基烷酸酯(PHA),包括聚3-羟基丁酸酯(PHB)、聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)、聚(3-羟基丁酸酯-4-羟基丁酸酯)(P3/4HB)、聚(3-羟基丁酸酯-3-羟基己酸酯)(PHBH)的产业化现状,综述了针对PHA材料热稳定性差、加工窗口较窄等缺点而进行的一些改性研究。选用适当方法对PHA进行改性,可使其性能得到优化,应用领域得到拓展。  相似文献   

4.
Abstract n -Amyl alcohol was examined as a source for the synthesis of the 3-hydroxyvalerate (3HV) unit of the biopolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), by Alcaligenes sp., Pseudomonas sp. and several methylotrophic bacteria. A. eutrophus and Ps. lemoignei synthesized P(3HB-co-3HV) from glucose and n -amyl alcohol under nitrogen-deficient conditions. Many of methylotrophic bacteria grown on methanol synthesized the copolyester from methanol and n -amyl alcohol under nitrogen-deficient conditions. The content and composition of the polyester varied from strain to strain. Paracoccus denitrificans differed from all others in having a higher content of 3-hydroxyvalerate units in the copolyester synthesized.  相似文献   

5.
The thermal degradation of the biodegradable bacterial polyesters poly(3-hydroxybutyrate), PHB, poly(3-hydroxyvalerate), PHV, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), 0-21 mol % of hydroxyvalerate, was studied. At moderately low temperatures (170-200 degrees C), the main product is a well-defined oligomer, especially a 500-10,000 g/mol macromolecule, which contains one unsaturated end group, predominantly a trans-alkenyl end group, as well as a carboxylic end group. The process was studied regarding the effect of the copolymer composition and reaction time at 190 degrees C. During the first few hours of reaction, the thermal degradation of PHB and PHV followed a kinetic model of random scission, but eventually auto-acceleration of the pyrolysis was detected, probably due to the influence of the crotonate end groups of the oligomers formed. Ten-time scale-up experiments on a Brabender instrument were successfully undertaken.  相似文献   

6.
The objective of this paper was to report a bacterium designated as 88D, capable of producing poly (3-hydroxybutyrate-co-3-hydroxyvalerate) [P (3HB-co-3HV)] copolymer from a single carbon source, which was isolated from a municipal sewage treatment plant in Hyderabad, India. This microorganism, based on the phenotypical features and genotypic investigations, was identified as Bacillus sp. The optimal growth of Bacillus sp. 88D occurred between 28 and 30°C and at pH 7. The strain yielded a maximum of 64.62% dry cell weight (DCW) polymer in the medium containing glucose as carbon source, which was followed by 60.46% DCW polymer in glycerol containing medium. Bacillus sp. 88D produced P (3HB-co-3HV) from glucose or glycerol, when they were used as a single carbon substrate. This bacterium produced polyhydrxybutyrate (PHB) when sodium acetate was used as sole carbon substrate. The viscosity average molecular mass (Mv) of the copolymers ranged from 523 to 627 kDa. The physical, chemical and mechanical properties of the biopolymers were characterized.  相似文献   

7.
The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-degrading strain Acidovorax sp. HB01 was isolated from an activated sludge sample. A novel PHBV depolymerase with a molecular weight of 43.4 kDa was purified to homogeneity from the culture supernatant of the HB01 strain. The optimum pH and temperature of the PHBV depolymerase were 7.0 and 50 °C, respectively. The PHBV depolymerase can also degrade polyhydroxybutyrate, poly (3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(caprolactone); however, the PHBV degradation activity of the depolymerase is higher than its activity against the other polymers. Effect of metal ions and various inhibitors on the PHBV depolymerase activity was examined. The addition of Na(+), K(+), and Ca(2+) markedly increased the hydrolysis rate, whereas the enzyme activity was inhibited by Zn(2+), Mg(2+), Mn(2+), and particularly by Cu(2+) and Fe(2+). Ethylenediaminetetraacetic acid was found to have a significant inhibitory effect. The main degradation product of depolymerase was identified as the 3-hydroxybutyric acid monomer and 3-hydroxyvaleric acid monomers via mass spectrometry.  相似文献   

8.
The aim of this study was to evaluate and to compare the long-term kinetics curves of biodegradation of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and a PHB/polylactic acid composite. The total weight loss and the change of average viscosity molecular weight were used as the parameters reflecting the biodegradation degree. The rate of biodegradation was analyzed in vitro in the presence of lipase and in vivo after film implantation in animal tissues. The morphology of the PHB film surface was studied by the atomic force microscopy technique. It was shown that PHB biodegradation involves both polymer hydrolysis and its enzymatic biodegradation. The results obtained in this study can be used for the development of various PHB-based medical devices.  相似文献   

9.
The copolymerization of poly(3-hydroxybutyrate) (PHB) is a promising trend in bioengineering to improve biomedical properties, e.g. biocompatibility, of this biodegradable polymer. We used strain Azotobacter chroococcum 7B, an effective producer of PHB, for biosynthesis of not only homopolymer and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also novel terpolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(ethylene glycol) (PHB-HV-PEG), using sucrose as the primary carbon source and valeric acid and poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-HV-PEG was confirmed by 1H nuclear-magnetic resonance analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) of produced biopolymer, the protein adsorption to the terpolymer, and cell growth on biopolymer films were studied. Despite of low EG-monomers content in bacterial-origin PHB-HV-PEG polymer, the terpolymer demonstrated significant improvement in biocompatibility in vitro in contrast to PHB and PHB-HV polymers, which may be coupled with increased protein adsorption, hydrophilicity and surface roughness of PEG-containing copolymer.  相似文献   

10.
A novel PHB depolymerase from a thermophilic Streptomyces sp. MG was purified to homogeneity by hydrophobic interaction chromatography and gel filtration. The molecular mass of the purified enzyme was 43 kDa as determined by size exclusion chromatography and 41 kDa by SDS-PAGE. The optimum pH and temperature were 8.5 and 60 °C respectively. The enzyme was stable at 50 °C and from pH 6.5–8.5. The enzyme hydrolyzed not only bacterial polyesters, i.e. poly(3-hydroxybutyric acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), but also synthetic, aliphatic polyesters such as polypropiolactone, poly(ethylene adipate) and poly(ethylene succinate). Revisions requested 9 November 2005; Revisions received 12 December 2005  相似文献   

11.
The ability of Azotobacter chroococcum strain 7B, producer of poly(3-hydroxybutyrate) (PHB), to synthesize its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) was studied. It was demonstrated, for the first time, that A. chroococcum strain 7B was able to synthesize P(3HB-co-3HV) with various molar rates of HV in the polymer chain when cultivated on medium with sucrose and carboxylic acids as precursors of HV elements in the PHB chain, namely, valeric (13.1–21.6 mol %), propanoic (3.1 mol %), and hexanoic (2.1 mol %) acids. Qualitative and functional differences between PHB and P(3HB-co-3HV) were demonstrated by example of the release kinetic of methyl red from films made of synthesized polymers. Maximal HV incorporation into the polymer chain (28.8mol %) was recorded when the nutrient medium was supplemented with 0.1% peptone on the background of 20 mM valerate. These results suggest that that the studied strain can be regarded as a potential producer of not only PHB but also P(3HB-co-3HV).  相似文献   

12.
This is the first report on the degradation of poly(3-hydroxybutyrate) (PHB), and its copolymers poly(3-hydroxyvalerate) P(3HB-co-10-20% HV) by Nocardiopsis aegyptia, a new species isolated from marine seashore sediments. The strain excreted an extracellular PHB depolymerase and grew efficiently on PHB or its copolymers as the sole carbon sources. The degradation activity was detectable by the formation of a transparent clearing zone around the colony on an agar Petri plate after 25 days, or a clearing depth under the colony in test tubes within 3 weeks. The previous techniques proved that the bacterium was able to assimilate the monomeric components of the shorter alkyl groups of the polymers. Nocardiopsis aegyptia hydrolyzed copolymers 10-20% PHBV more rapidly than the homopolymer PHB. The bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate), and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). The samples were degraded at the surface and proceeded to the inner part of the materials. Clear morphological alterations of the polymers were noticed, indicating the degradative capability of the bacterium. Plackett-Burman statistical experimental design has been employed to optimize culture conditions for maximal enzyme activity. The main factors that had significant positive effects on PHB depolymerase activity of Nocardiopsis aegyptia were sodium gluconate, volume of medium/flask and age of inoculum. On the other hand, MgSO4.7H2O, KH2PO4, K2HPO4 and NH4NO3 exhibited negative effects. Under optimized culture conditions, the highest activity (0.664 U/mg protein) was achieved in a medium predicted to be near optimum containing (in g/L): PHB, 0.5; C6H11O7Na, 7.5; MgSO4.7H2O, 0.35; K2HPO4, 0.35; NH4NO3, 0.5; KH2PO4, 0.35; malt extract, 0.5 and prepared with 50% seawater. The medium was inoculated with 1% (v/v) spore suspension of 7 days old culture. Complete clarity of the medium was achieved after 3 days at 30 degrees C.  相似文献   

13.
Lamellar single crystals of four random copolymers of (R)-3-hydroxybutyrate with different hydroxyalkanoates: poly(3-hydroxybutyrate-co-8 mol%-3-hydroxyvalerate) (P(3HB-co-8%-3HV)), poly(3-hydroxybutyrate-co-10 mol%-4-hydroxybutyrate) (P(3HB-co-10%-4HB)), poly(3-hydroxybutyrate-co-8 mol%-3-hydroxyhexanoate) (P(3HB-co-8%-3HH)) and poly(3-hydroxybutyrate-co-10 mol%-6-hydroxyhexanoate) (P(3HB-co-10%-6HH)), were grown from dilute solutions of chloroform and ethanol. All single crystals have lath-shaped morphology and the second monomer units seem to be excluded from the P(3HB) crystal, on the basis of the electron diffraction diagrams. The enzymatic degradation of P(3HB-co-8%-3HH) and P(3HB-co-10%-6HH) single crystals was investigated with an extracellular PHB depolymerase from Alcaligenes faecalis T1. Adsorption of an extracellular PHB depolymerase, examined using an immuno-gold labelling technique, demonstrated a homogeneous distribution of enzyme molecules with a low concentration on the crystal surfaces. Enzymatic degradation of single crystals progressed from the edges and ends of crystals to yield narrow cracks along their long axes and the small crystal fragments. Lamellar thicknesses of single crystals and molecular weights of copolymer chains remained unchanged during the enzymatic hydrolysis. The above results support the hypothesis that the hydrophobic adsorption of the enzyme contributes to increase the mobility of molecular chains of single crystals and generate the disordered chain-packing regions. The active-site of PHB depolymerase takes place preferentially at the disordered chain-packing regions of crystal edges and ends with endo-exo enzymatic hydrolysis behaviour, termed processive degradation.  相似文献   

14.
Recent data on the biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and its regulation in bacteria are reviewed, with special emphasis on the properties and regulation of the relevant enzymes and their genes. Some conditions promoting the synthesis of PHB and PHB/V by natural, mutant, and recombinant producers are considered.  相似文献   

15.
Polyhydroxyalkanoate (PHA) biosynthesis genes were cloned and characterized from Alcaligenes sp. SH-69 which can synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon source. The DNA sequence analysis revealed two consecutive genes coding for PHA synthase and -ketothiolase and the gene coding for acetoacetyl-CoA reductase located about 2-kbp downstream of the two genes. Recombinant Escherichia coli strains with the cloned PHA biosynthesis genes synthesized poly(3-hydroxybutyrate) in Luria-Bertani medium containing 2% glucose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in M9 minimal medium supplemented with 1% glucose, 1 mM valine, and 2 mM threonine, which demonstrates that the PHA biosynthesis genes of Alcaligenes sp. SH-69 are functional in E. coli. © Rapid Science Ltd. 1998  相似文献   

16.
A precursor feeding strategy for effective biopolymer producer strain Azotobacter chroococcum 7B was used to synthesize various poly(3-hydroxybutyrate) (PHB) copolymers. We performed experiments on biosynthesis of PHB copolymers by A. chroococcum 7B using various precursors: sucrose as the primary carbon source, various carboxylic acids and ethylene glycol (EG) derivatives [diethylene glycol (DEG), triethylene glycol (TEG), poly(ethylene glycol) (PEG) 300, PEG 400, PEG 1000] as additional carbon sources. We analyzed strain growth parameters including biomass and polymer yields as well as molecular weight and monomer composition of produced copolymers. We demonstrated that A. chroococcum 7B was able to synthesize copolymers using carboxylic acids with the length less than linear 6C, including poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB-4MHV) using Y-shaped 6C 3-methylvaleric acid as precursor as well as EG-containing copolymers: PHB–DEG, PHB–TEG, PHB–PEG, and PHB–HV–PEG copolymers using short-chain PEGs (with n?≤?9) as precursors. It was shown that use of the additional carbon sources caused inhibition of cell growth, decrease in polymer yields, fall in polymer molecular weight, decrease in 3-hydroxyvalerate content in produced PHB–HV–PEG copolymer, and change in bacterial cells morphology that were depended on the nature of the precursors (carboxylic acids or EG derivatives) and the timing of its addition to the growth medium.  相似文献   

17.
The regulatory mechanisms of the biosynthesis of in vivo poly-beta-hydroxybutyrate [PHB] and poly(3-hydroxybutyrate-3-hydroxyvalerate) [P(3HB-3HV)] of Alcaligenes eutrophus were investigated by using various transformants with enzyme activities that were modified through the transformation of cloned phbCAB genes. The biosynthesis rates of PHB and P(3HB-3HV) were controlled by beta-ketothiolase and acetoacetyl-CoA reductase, and especially by beta-ketothiolase condensing acetyl-CoA or propionyl-CoA. The contents of PHB and P(3HB-3HV) were controlled by PHB synthase, polymerizing 3-hydroxybutyrate to PHB or 3-hydroxybutyrate and 3-hydroxyvalerate to P(3HB-3HV). The molar fraction of 3-hydroxyvalerate in P(3HB-3HV) was also closely connected with PHB synthase. This may be due to the accelerated polymerization between 3-HB from glycolysis pathway and 3-HV converted from propionate supplied as precursor. Enforced beta-ketothiolase and acetoacetyl-CoA reductase to PHB synthase tended to enlarge the size of the PHB and P(3HB-3HV) granules, however, higher activity ratio of PHB synthase to beta-ketothiolase and acetoacetyl-CoA reductase than parent strain tended to induce the number of granules.  相似文献   

18.
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h.  相似文献   

19.
20.
Summary A Pseudomonas sp. EL-2 strain capable of synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was isolated from activated sludge. For simulation of P(3HB-co-3HV) production in the cells, deficiency of nutrients such as NH4 +, SO4 2- and Mg2+ was crucial and the maximum content of P(3HB-co-3HV) could reach 46% on NH4 +-deficient medium. This organism synthesized P(3HB-co-3HV) with 3HV monomer in the range from 1.9 to 49.3 mol% from unrelated single carbon sources such as glucose, fructose, propionate, or sorbitol. P(3HB-co-3HV)s containing a higher fraction of 3HV were produced by adding propionic acid to glucose medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号