首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of passive immunization of ewes against progesterone on plasma progesterone concentrations and on the metabolic clearance rate (MCR) and production rate (PR) of progesterone were investigated. Three treatment groups were studied: 1) nonimmunized controls, 2) ewes passively immunized with antiprogesterone serum, and 3) immunized progestagen-treated ewes, treated concomitantly with anti-serum and with a synthetic progestagen that is not bound by the antiserum. Progesterone levels in the immunized ewes reached a maximum of 27.7+/-4.8 nmol/l and were significantly higher (P<0.05) than in the nonimmunized controls (9.2+/-1.1 mol/l) or the immunized progestagen-treated ewes (15.6+/-1.6 nmol/l). Mean progesterone MCR in the immunized ewes was 1.6+/-0.5 and 2.1+/-0.3 liter/min on Days 7 and 13 of the estrous cycle, respectively, compared with 0.8+/-0.2 and 1.4+/-0.3 liter/min, respectively, in nonimmunized controls. The progesterone production rate in the immunized ewes was significantly higher than in nonimmunized controls, and reached 12.0+/-2.2 and 19.7+/-1.6 nmol/min on Days 7 and 13 of the estrous cycle, respectively, compared with 4.6+/-0.6 and 10.0+/-2.5 nmol/min in nonimmunized controls (P<0.03 for both comparisons). Treatment with progestagen had no significant effect on progesterone MCR or PR of immunized ewes. The LH pulse frequency on Days 10 to 11 of the cycle was 0.7+/-0.3, 1.8+/-0.3 and 0.0+/-0.0 pulses/6 h in the control, immunized and immunized progestagen-treated groups, respectively (P<0.05). It is concluded that the increased plasma progesterone levels in the immunized ewes are the result of an increased progesterone production rate, which may have been induced by an increase in gonadotrophin secretion or by a direct effect of the anti-progesterone serum on the ovary.  相似文献   

2.
Two experiments were conducted to determine the effects of immunization of ewes with progesterone-11alpha hemisuccinate coupled to bovine serum albumin (P-BSA) on estrous cycles, serum progesterone and fertility. In experiment I, ewes were immunized during the first estrous cycle in September and observed through January. Immunization against progesterone increased (P<.01) the proportion of estrous cycles of abnormal length. Two general patterns were evident in the ten ewes which were immunized against progesterone: 4 continued to show cyclic patterns of estrous activity throughout the experimental period and 6 entered periods of anestrus characterized by presence of corpora lutea. Apparent, aberrant, estrous activity and shortened luteal phases were also observed in ewes which were immunized against progesterone. In experiment II, immunization against progesterone caused serum progesterone concentrations to be 4 to 8 times higher (P<.01) than ewes which were immunized against bovine serum albumin. Fertility was reduced (P<.01) by immunization with P-BSA. In experiment II, immunization against progesterone shortened (P<.01) the second estrous cycle post-immunization, and at day 13 of the third cycle corpora lutea in P-BSA-immunized ewes were regressing and were lighter (P<.05) than in ewes which were immunized with bovine serum albumin.  相似文献   

3.
Pulsatile secretion of progesterone has been observed during the late luteal phase of the menstrual cycle in the rhesus monkey and human. As the luteal phase progresses in each of these species, there is a pattern of decreased frequency and increased amplitude of progesterone pulses. The present study was designed to determine the pattern of progesterone secretion during the late luteal phase (Days 10-16) of the normal ovine estrous cycle. Five unanesthetized ewes, each bearing an indwelling cannula in the utero-ovarian vein, were bled every 15 min from 0800 h on Day 10 through 0800 h on Day 16 of the estrous cycle. With the computer program PULSAR, it was determined that progesterone secretion was episodic, with pulsations observed on all days. Analysis of variance was used to determine differences in frequency, amplitude, and interpeak interval (IPI) of progesterone pulses among ewes and days. The ewes averaged 8.0 +/- 0.63 pulses of progesterone per 24 h. Mean frequency of pulses was not different between days but showed differences between ewes. Mean amplitude of progesterone pulses was 7.0 +/- 0.27 ng/ml, with no differences observed either between days or between ewes. Mean IPI was 197 +/- 7.1 min, and, like frequency, the IPI was not different between days, but varied between ewes. No consistent temporal relationship was found between progesterone pulses and luteinizing hormone (LH), as determined by bioassay and radioimmunoassay, on Day 14 of the cycle in one ewe. The results indicate that progesterone secretion is episodic during the luteal phase of the ovine estrous cycle and is independent of LH pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
《Theriogenology》1986,26(6):847-856
Experiments were conducted to evaluate a controlled internal drug-release (CIDR) dispenser containing progesterone to control the estrous cycle of ewes. After insertion of CIDR dispensers into the vaginae of ovariectomized ewes (Experiment 1; n = 11), the mean plasma progesterone rose from 0.74 ± 0.2 ng/ml to a peak of 5.5 ± 1.0 ng/ml within 2 h and then declined to 3.0 ± 0.5 ng/ml by 48 h. This was followed by a more gradual decline to 1.7 ± 0.3 ng/ml at the time of removal 12 or 14 d later. Following removal, the levels declined to baseline within 4 h. In Experiment 2, a 12- or 14-d treatment with CIDR dispensers was initiated in ewes 2, 9 and 16 d after synchronization of the estrous cycle with fluorogestone acetate (FGA)-impregnated intravaginal sponges. An intramuscular (i.m.) injection of 500 IU pregnant mare serum gonadotropin (PMSG) was given at the time of removal of the FGA sponge or CIDR dispenser. Based on plasma progesterone profiles, CIDR dispensers inserted 9 or 16 d after FGA sponge removal delayed the onset of a new estrous cycle until they were withdrawn. Following withdrawal, ovulation was effectively synchronized in all treatment groups and accompanied by development of functionally active corpora lutea with a normal lifespan. In Experiment 3, comparison of the mating response of ewes after treatment with CIDR dispensers (n = 192) or FGA sponges (n = 194) showed that 92% and 91% of the treated ewes, respectively, were marked by the ram within 72 h. Fertility and litter size of ewes bred at the synchronized and followup estrus were similar for both treatments. These results indicate that treatment of ewes with CIDR dispensers containing progesterone maintains plasma levels of progesterone within the range found during the normal estrous cycle. The CIDR dispenser is effective in synchronizing the estrous cycle of adult ewes and offers a promising alternative to the FGA-impregnated intravaginal sponge.  相似文献   

5.
The objective of our study was to determine the effect of chronic utero-ovarian vein catheterization in ewes on estrous cycle length, plasma progesterone (P) concentration, and myometrial electromyographic activity. Cyclic ewes with inferior vena cava catheters were used as controls. Estrus was synchronized in ten ewes and 10 to 12 d following estrus, the ewes were anesthetized, fitted with myometrial electromyograph leads and with utero-ovarian vein (n = 5) or inferior vena cava (n = 5) catheters. After surgery, ewes returned to estrus as expected (16 to 18 d interestrus interval). The second cycle of four of five ewes with utero-ovarian vein catheters were prolonged (40 to 58 d). The inferior vena cava catheterized ewes had normal length second cycles. Plasma P concentrations reflected the estrous cycles: low ( 0.05).  相似文献   

6.
Ewes were actively immunized against oestrone-6-(O-carboxymethyl)-oxime-bovine serum albumin, 17 beta-oestradiol-6-(O-carboxymethyl)oxime-bovine serum albumin or bovine serum albumin (controls). All 4 control ewes, 1 of 5 oestradiol-immunized ewes and 1 of 5 oestrone-immunized ewes had regular oestrous cycles. The other animals displayed oestrus irregularly or remained anoestrous. The plasma concentrations of LH and, to a lesser degree, FSH were increased relative to those in control ewes on Days 11-12 after oestrus or a similar total period after progestagen treatment in ewes not showing oestrus. The ovaries were examined and jugular venous blood, ovarian venous blood and follicular fluid were collected at laparotomy on Days 9-10 of the oestrous cycle. The ovaries of immunized ewes were heavier than those of control ewes. There were no CL in 5 of the immunized ewes but in the other 5 there were more CL than in the control ewes. Ovaries from 4 of 5 oestrone-immunized ewes contained luteinized follicles, while ovaries from 4 of 5 oestradiol-immunized ewes contained very large follicles with a degenerated granulosa and a hyperplastic theca interna. Both types of follicles produced progesterone, detectable in ovarian venous plasma and production of other steroids, particularly androstenedione, was also increased. The steroid-binding capacity of plasma was increased in the immunized ewes. The binding capacity of follicular fluid for oestradiol-17 beta and oestrone was similar to that of jugular venous plasma from the same ewes. These results suggest that immunization against oestrogens disrupts reproductive function by interfering with the feedback mechanisms controlling gonadotrophin secretion.  相似文献   

7.
The role of insulin in mediating pituitary responses to nutrition was investigated in 30 mature Border Leicester X Merino ewes. The ewes were infused with saline (n = 15) or bovine insulin at 0.4 IU/kg/d (n = 15) for 72 h during the luteal phase of the estrous cycle The ewes were housed in individual pens and were fed, ad libitum, a diet of low quality straw. Their estrous cycles were synchronized with prostaglandin (PG), with infusions given over Days 9 to 11 of the estrous cycle. A further injection of PG was given at the end of the infusion, and the subsequent ovulation rate was determined by endoscopy 12 d later. Blood samples were collected every 4 h from Day 8 until 52 h after the final PG injection for the determination of plasma FSH, insulin and glucose concentrations. On Day 11 blood samples were also taken every 20 min for 24 h for the determination of LH pulse characteristics. During the infusion of insulin, its concentration rose 4-fold and remained elevated until the end of infusion, when it fell to pretreatment concentrations. Glucose concentrations were significantly reduced during the insulin infusion and rose to pretreatment concentrations after infusion. In control ewes glucose and insulin concentrations did not change. Ovulation rate of treated ewes was not affected by the insulin (1.9 +/- 0.07) compared with that of control ewes (2.0 +/- 0.10). Neither were FSH concentrations affected by treatment with insulin, although a significant interaction of treatment with time was observed in the 36 h after infusion. The pre-ovulatory decline in FSH concentrations was delayed by about 8 h in the insulin treated ewes. The mean (+/- SEM) LH pulse frequency (4.3 +/- 0.4 vs 1.8 +/- 0.3 pulses per 24 h) and the mean (+/- SEM) concentration of LH (0.48 +/- 0.04 vs 0.32 +/- 0.03 ng/ml) were both significantly reduced by insulin. These results indicate that insulin-induced hypoglycaemia inhibits LH secretion in cyclic ewes and implicates insulin as a mediator of normal hypothalamo-pituitary function.  相似文献   

8.
Four mature, cyclic ewes were given injections (I.M.) of a conjugate of 1,3,5 (10)-estratrien-3-ol-6,17-dione, 6 carboxyoxime bovine serum albumin (immunized ewes) on day 3 after estrus, and at days 10, 20, 40, 58, 91 and 134 after this initial treatment. Six control ewes treated with carrier emulsion alone continued to cycle normally. Three of the immunized ewes failed to exhibit estrus, an associated preovulatory surge of LH and ovulation. One ewe showed 1 abnormally short estrous period and then became anestrus. Injection of an estrone-protein-conjugate at days 3 and 13 after estrus did not appear to interfere with the rate of structural luteolysis of the corpus luteum present, but plasma concentrations of progesterone reached abnormally high luteal phase levels and in 2 ewes failed, subsequently to decline to normal follicular phase levels. Estrone binding capacity rose as early as day 9 after first treatment, and concentrations of LH rose as early as day 14. Subsequently, plasma levels of LH, estrone and progesterone and antisera titer rose; the only significant cross reaction of the antisera was with estradiol 17beta (11.32 +/- 2.80%).  相似文献   

9.
The administration of LH-RH in a pulsatile regimen (100 ng i.v./h for 48 h) to acyclic ewes 26-30 days post partum increased plasma LH concentrations, and both the frequency and amplitude of plasma LH pulses. In 12/14 ewes these increases were followed by plasma LH surges similar to the preovulatory surges observed in 10 control cyclic ewes. Subsequent luteal function in the post-partum ewes was deficient. Plasma progesterone was detected in 7/12 post-partum ewes showing plasma LH surges. The concentrations were lower (1.3 +/- 0.2 ng/ml) and detected for shorter periods (3-10 days) than in cyclic ewes (2.4 +/- 0.2 ng/ml, 12/15 days). In the post-partum ewes the increases in plasma LH concentrations before the LH surge were higher but of shorter duration than in the cyclic ewes. The inadequate luteal function in the post-partum ewes could therefore have been due to inappropriate LH stimulation of the ovary before the LH surge.  相似文献   

10.
The effect of bromocriptine (CB-154) on prolactin, progesterone and luteinizing hormone (LH) secretion was studied in cyclic sows. Four sows were given subcutaneous injections of bromocriptine on Day 14 of the estrous cycle (70 mg CB-154) and again on Day 16 of the cycle (50 mg CB-154). Two control sows were injected with vehicle at similar time intervals. Blood samples were taken four times daily (0700, 1100, 1500 and 1900 h) from Day 11 of the estrous cycle to Day 2 of the following estrous cycle. Prolactin peaks during the estrous cycle were not observed after CB-154 treatment. CB-154 treatment had no effect on plasma LH concentration, but plasma progesterone concentrations appeared to fluctuate more and slowly decreased.  相似文献   

11.
Mature Merino ewes in which the left ovary and its vascular pedicle had been autotransplanted to the neck were divided into control (N = 5) and immunized groups (N = 6). The immunized ewes were treated (2 ml s.c.) with Fecundin 1 and 4 weeks before the start of blood sampling. Ovarian and jugular venous blood was collected every 10 min at two stages of the follicular phase (21-27 h and 38-42 h after i.m. injection of 125 micrograms of a prostaglandin (PG) analogue) and during the mid-luteal phase (8 h at 15-min intervals). The ewes were monitored regularly for luteal function and preovulatory LH surges. Hormone concentrations and anti-androstenedione titres were assayed by RIA and ovarian secretion rates of oestradiol-17 beta, progesterone and androstenedione were determined. After the booster immunization, progesterone increased simultaneously with titre in immunized ewes, reaching 30 ng/ml at the time of PG injection when median titre was 1:10,000. All ewes responded to PG with LH surges 42-72 h later: 2 of the immunized ewes then had a second LH surge within 3-4 days at a time when peripheral progesterone values were 2-3 ng/ml. The frequency of steroid and LH pulses was greater in immunized ewes (P less than 0.05) during the luteal phase but not the follicular phase. The secretion rate of androstenedione was 6-10 times greater (19-37 ng/min; P less than 0.001) in immunized ewes at all sampling stages. Progesterone secretion rates were 3 times greater (16 micrograms/min; P less than 0.001) during the luteal phase in immunized ewes. The amplitude of oestradiol pulses was significantly reduced in immunized ewes (4.8 vs 2.1 ng/min at +24 h and 6.5 vs 2.8 ng/min at +40 h in control and immunized ewes, respectively: P less than 0.05) during the follicular phase. However, the mean secretion rate of oestradiol at each phase of the cycle was not significantly different between treatment groups. Analysis of bound and free steroid using polyethylene glycol showed that greater than 98% of peripheral and ovarian venous androstenedione and 86% of peripheral progesterone was bound in immunized ewes but there was no appreciable binding (less than 0.1%) in control ewes. Similarly, 50% of ovarian venous oestradiol was bound in immunized ewes compared to 15% in control ewes. We conclude that immunization against androstenedione increases the secretion rate of androstenedione and progesterone but not of oestradiol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The present study was developed to determine if administration of progesterone, early in the estrous cycle of the cow, stimulated an advanced pulsatile release of PGF2 alpha from the uterine endometrium resulting in a decreased interestrous interval. Twenty-three cyclic beef cows were randomly assigned to receive either sesame oil or progesterone (100 mg) on Day 1, 2, 3 and 4 of the estrous cycle. Peripheral plasma concentrations of progesterone and the metabolite of prostaglandin F2 alpha, 15-keto-13,14-dihydro-prostaglandin F2 alpha (PGFM) were measured by radioimmunoassay. Administration of exogenous progesterone increased peripheral plasma concentration of progesterone in treated (3.67 ng/ml) compared to control (1.28 ng/ml) cows from Day 2 through 5 of the estrous cycle. Progesterone administration shortened the interestrous interval (16.7 d) compared to controls (21.6 d). The shortened interestrous intervals in treated cows resulted from an earlier decline in peripheral plasma progesterone. Decline of peripheral plasma progesterone concentrations is coincident with an increased pulsatile release of PGFM in both progesterone treated and control cows. Results indicate that administration of exogenous progesterone stimulates an earlier maturation of endometrial development, causing an advanced release of PGF2 alpha which shortens the interestrous interval of the cow.  相似文献   

13.
Two experiments were undertaken to determine the hormonal response of Merino ewes to immunization against androstenedione (Fecundin). In Exp. 1 peripheral concentrations of LH, FSH and progesterone were monitored in spontaneously cycling ewes (20 immunized and 21 controls). In Exp. 2 (10 immunized and 10 controls) the same hormones were measured in ewes before and after prostaglandin (PG)-induced luteolysis and, in addition, the pattern of pulsatile LH secretion was determined during the luteal (PG + 12 days), early follicular (PG + 24 h) and late follicular (PG + 40 h) phase of the oestrous cycle. Ovulation rates were measured in both experiments. The results of these experiments indicate that androstenedione-immune animals have elevated ovulation rates (0.6-0.7 greater than control animals; P less than 0.05) associated with elevated plasma concentrations of LH and progesterone. The magnitude of the increase in plasma progesterone was correlated with androstenedione antibody titre (r = 0.6, P less than 0.001). LH pulse frequency of androstenedione-immune ewes tended to be higher at all stages of the oestrous cycle, but this difference was only significant (P less than 0.05) during the luteal phase. Mean plasma concentrations of FSH did not differ significantly between immunized and control ewes at any stage of the cycle. Analysis of periodic fluctuations in FSH during the luteal phase revealed that androstenedione-immune animals had a similar number of fluctuations of a similar amplitude to those of control animals, but the nadir of these fluctuations was lower (P less than 0.05) in immunized animals. A significant (P less than 0.05) negative correlation existed between androstenedione antibody titre and the interval between FSH peaks (r = -0.49) and androstenedione antibody titre and FSH nadir concentrations (r = -0.46). It is concluded that plasma FSH concentrations are not a determinant of ovulation rate in androstenedione-immune ewes and that increased LH concentrations, or perturbation of normal intraovarian mechanisms, may be responsible for the increase in ovulation rate observed in ewes immunized against androstenedione.  相似文献   

14.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

15.
The pattern of GnRH-like stimuli capable of inducing follicular growth, ovulation, and luteal function was evaluated in ewes passively immunized against GnRH. The estrous cycles of 30 regularly cyclic sheep were synchronized using vaginal pessaries impregnated with a synthetic progestogen. Animals were passively immunized against GnRH (groups 2-5, n = 6) or the carrier protein, keyhole limpet hemocyanin (KLH; group 1, n = 6), at the time of pessary removal (PR). Circhoral delivery of saline (groups 1, 2, and 5) or low amplitude GnRH agonist (des-Gly10 GnRH ethylamide [100 ng/hourly pulse]; groups 3 and 4) was initiated at PR and continued for 3 (groups 4 and 5) or 12 days (groups 1-3). In groups 4 and 5, the amplitude of the GnRH-like stimulus was increased to 800 ng/hourly pulse (stimulus-shift) during the 24-h period beginning 72 h after PR. The amplitude of the hourly stimulus was adjusted to 100 ng/pulse 96 h after PR and continued at that level to Day 12. The endocrine changes associated with follicle growth and maturation (serum concentrations of estradiol [E2] above 10 pg/ml), ovulation (surge-like secretion of LH and FSH), and normal luteal function (serum concentrations of progesterone [P] above 2 ng/ml) were evident in ewes passively immunized against KLH (group 1). In this group, the preovulatory surge of gonadotropins was noted 48.7 +/- 1.2 h after PR. These endocrine events were blocked by passive immunization against GnRH (group 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of administration of progesterone and oestradiol on ovine endometrial oxytocin receptor concentrations and plasma concentrations of 13,14-dihydro-15-keto prostaglandin F-2 alpha (PGFM) after oxytocin treatment were determined in ovariectomized ewes. Ewes received progestagen pre-treatment, progesterone and/or oestradiol in 11 different treatment schedules. Progestagen pre-treatment decreased oxytocin receptor concentrations in endometrium from ewes treated subsequently with either progesterone for 5 days or progesterone for 5 days plus oestradiol on Days 4 and 5 of progesterone treatment. Oestradiol increased endometrial oxytocin receptor concentrations when administered on Days 4 and 5 of 5 days progesterone treatment. Progestagen pre-treatment followed by progesterone treatment for 12 days caused a large increase in oxytocin receptors and no further increase occurred when ewes were given oestradiol on Days 11 and 12, or when progesterone was withdrawn on Days 11 and 12, or these two treatments were combined. Oxytocin administration caused an increase in plasma PGFM concentrations in ewes which did not receive progestagen pre-treatment, and subsequently received progesterone treatment for 5 days and oestradiol treatment on Days 4 and 5 of progesterone treatment. Similarly treated ewes which received progestagen pre-treatment did not respond to oxytocin. Oxytocin administration also increased plasma PGFM concentrations in ewes which received progestagen pre-treatment followed by progesterone treatment for 12 days, progesterone treatment for 12 days plus oestradiol on Day 11 and 12 of progesterone treatment, progesterone withdrawal on Day 11 and 12, or progesterone withdrawal and oestradiol treatment combined. The results indicate that (1) progesterone pre-treatment affects oxytocin receptor concentrations in the endometrium and uterine responsiveness to oxytocin and (2) progesterone treatment alone for 12 days after a treatment which mimics a previous luteal phase and oestrus is sufficient to induce oxytocin receptors and increase oxytocin-induced PGF release. These results emphasize the importance of progesterone and provide information which can be used to form an hypothesis for control of luteolysis and oestrous cycle length in the ewe.  相似文献   

17.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

18.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

19.
Adult female guinea pigs were actively immunized with prostaglandin F-2alpha conjugated to bovine serum albumin (BSA). Control animals, immunized against BSA continued to cycle normally, while the animals immunized against prostaglandin F-2alpha stopped cycling after one to three normal cycles. Laparotomy at 30 days after the last estrus revealed no recently formed corpora lutea. During the remaining 70 days of observation the antibody titer increased to 1:700, accompanied by increasing total serum estrogens (136 pg/ml at day 100) and a slow decline in circulating progesterone levels (0.6 ng/ml at day 100). The ovaries at day 100 contained degenerated corpora lutea and luteinized follicles. The suppression of the estrous cycle in the present experiments was interpreted as resulting from prolongation of luteal function as well as from inhibition of ovulation.  相似文献   

20.
The microsphere technique was used to obtain estimates of ovarian capillary blood flow near ovulation, in 8 seasonally anoestrous ewes, which were induced to ovulate by GnRH therapy. Plasma progesterone concentrations were monitored in jugular blood sampled between Days 4 and 7 after the onset of the preovulatory LH surge. The ewes were then slaughtered. Three of the ewes were treated with a single injection of 20 mg progesterone before GnRH therapy. In these ewes and 1 other, plasma progesterone values increased after ovulation and reached 1.0 ng/ml on Day 7 following the preovulatory LH surge (normal, functional CL), whilst in the other 4 ewes progesterone concentrations increased initially then declined to 0.5 ng/ml by Day 7 (abnormal CL). In the ewes exhibiting normal luteal function, the mean ovarian capillary blood flow was significantly greater (P less than 0.01) than that for ewes having abnormal luteal function. Irrespective of the type of CL produced, capillary blood flow was significantly greater (P less than 0.05) in ovulatory ovaries than in non-ovulatory ovaries. These findings indicate that the rate of capillary blood flow in ovaries near ovulation may be a critical factor in normal development and maturation of preovulatory follicles and function of subsequently formed CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号