首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunflower plants were grown hydroponically under controlled conditions with the root systems confined in small containers. Root confinement inhibited the growth of sunflower plants as indicated by reduction in both leaf and cotyledon area and root and shoot fresh weight. This effect was more pronounced in shoots. Root confinement favored the accumulation of potassium in the roots and shoots, and the exudation of potassium and water in excised roots. Xylem sap from root confined plants inhibited cotyledon expansion as revealed by bioassay with decapited sunflower seedlings. In addition decapited control plants incubated in ABA solution also showed cotyledon growth reduction. Xylem sap ABA analysis indicated a 7-times higher concentration in root confined than control plants. Our results suggest the synthesis of a chemical signal in the roots of plants subjected to mechanical stress which can be responsible for the inhibition of plant growth.  相似文献   

2.
We tested whether plants allocate proportionately less biomass to roots in response to above-ground competition as predicted by optimal partitioning theory. Two population densities of Abutilon theophrasti were achieved by planting one individual per pot and varying spacing among pots so that plants in the two densities experienced the same soil volume but different degrees of canopy overlap. Density did not affect root:shoot ratio, the partitioning of biomass between fine roots and storage roots, fine root length, or root specific length. Plants growing in high density exhibited typical above-ground responses to neighbours, having higher ratios of stem to leaf biomass and greater leaf specific area than those growing in low density. Total root biomass and shoot biomass were highly correlated. However, storage root biomass was more strongly correlated with shoot biomass than was fine-root biomass. Fine-root length was correlated with above-ground biomass only for the small subcanopy plants in crowded populations. Because leaf surface area increased with biomass, the ratio between absorptive root surface area and transpirational leaf surface area declined with plant size, a relationship that could make larger plants more susceptible to drought. We conclude that A. theophrasti does not reallocate biomass from roots to shoots in response to above-ground competition even though much root biomass is apparently involved in storage and not in resource acquisition.  相似文献   

3.
小麦根愈伤组织胚胎发育过程研究   总被引:4,自引:0,他引:4  
实验通过对6个人工合成小麦品系和对照品种“中国春”种子根愈伤组织分化形成再生植株的过程进行形态和组织切片观察,发现分化初期有2种途径,一种是从愈伤组织先形成不定胚,然后再发育成不定芽和不定根,另一种途径是直接从愈伤组织中分化发育成不定根和不定芽;分化后期不定芽和不定根生长发育有3种类型:一种是不定芽发育先于不定根,一种是不定芽与不定期不定芽和不定根生长发育有种类型:一种是不一定芽发育先于不定根,一  相似文献   

4.
Abstract. It is now clear that drying of the soil does not always result in an early change in shoot water status. This may be because stomata close and leaf growth slows to reduce water loss. When this is the case, it is necessary to ask how the change in soil water status has been 'sensed'by the shoot. The current view is that soil drying results in some type of chemical signalling between roots and shoots. The sensitivity of the response and experiments involving the manipulation of small parts of root systems suggest that the signalling involves more than a simple change in root activity in response to soil drying. In this paper, we consider the evidence for chemical signalling between roots and shoots and discuss the possible candidates for such signals. In some plants, root-sourced ABA can apparently influence shoot physiology and growth in the absence of any perturbation of shoot water relations. The ABA produced is quantitatively sufficient to account for the responses observed. Applied ABA can mimic many of the effects of soil drying on plants, including effects at the plasma membrane and on gene expression. Perhaps uniquely, ABA seems to be involved in signalling between different plant organs, and in signalling at the transmembrane and genome levels. We review the effects of ABA on leaf cells with a view to gaining some understanding of how soil drying may influence plant development.  相似文献   

5.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

6.
Developmental biology and evolutionary studies have merged into evolutionary developmental biology (“evo-devo”). This synthesis already influenced and still continues to change the conceptual framework of structural biology. One of the cornerstones of structural biology is the concept of homology. But the search for homology (“sameness”) of biological structures depends on our favourite perspectives (axioms, paradigms). Five levels of homology (“sameness”) can be identified in the literature, although they overlap to some degree: (i) serial homology (homonomy) within modular organisms, (ii) historical homology (synapomorphy), which is taken as the only acceptable homology by many biologists, (iii) underlying homology (i.e., parallelism) in closely related taxa, (iv) deep evolutionary homology due to the “same” master genes in distantly related phyla, and (v) molecular homology exclusively at gene level. The following essay gives emphasis on the heuristic advantages of seemingly opposing perspectives in structural biology, with examples mainly from comparative plant morphology. The organization of the plant body in the majority of angiosperms led to the recognition of the classical root–shoot model. In some lineages bauplan rules were transcended during evolution and development. This resulted in morphological misfits such as the Podostemaceae, peculiar eudicots adapted to submerged river rocks. Their transformed “roots” and “shoots” fit only to a limited degree into the classical model which is based on either–or thinking. It has to be widened into a continuum model by taking over elements of fuzzy logic and fractal geometry to accommodate for lineages such as the Podostemaceae.  相似文献   

7.
Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P‐limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P‐limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.  相似文献   

8.
Continuous measurements of CO2-evolution and dry matter accumulation were carried out on shoots and roots separately of intact Helianthus annuus L. cv. Autumn Beauty plants grown in nutrient solution at different root temperatures. The data were used to distinguish between growth and maintenance components of respiration. The maintenance and growth coefficients were higher in the root system than in the shoots. The overall efficiency of assimilate utilization was within the range reported in the literature. An increase in root temperature increased the maintenance part of root respiration and, to a lesser degree, also shoot maintenance respiration. Neither root nor shoot growth respiration coefficients were affected by root temperature. It is concluded that the study of whole-plant respiration masks differences in energy utilization between shoots and roots.  相似文献   

9.
Sheng C  Harper JE 《Plant physiology》1997,113(3):825-831
Grafting studies involving Williams 82 (normally nodulating) and NOD1-3 (hypernodulating) soybean (Glycine max [L.] Merr.) lines and Lablab purpureus were used to evaluate the effect of shoot and root on nodulation control and plant growth. A single- or double-wedge graft technique, with superimposed partial defoliation, was used to separate signal control from a photosynthate supply effect. Grafting of hypernodulated soybean shoots to roots of Williams 82 or L. purpureus resulted in increased nodule numbers. Grafting of two shoots to one root enhanced root growth in both soybean genotypes, whereas the nodule number was a function of shoot genotype but not of the photosynthetic area. In double-shoot, single-root-grafted plants, removing trifoliolate leaves from either Williams 82 or NOD1-3 shoots decreased root and shoot dry matter, attributable to decreased photosynthetic source. Concurrently, Williams 82 shoot defoliation increased the nodule number, whereas NOD1-3 shoot defoliation decreased the nodule number on both soybean and L. purpureus roots. It was concluded that (a) soybean leaves are the dominant site of autoregulatory signal production, which controls the nodule number; (b) soybean and L. purpureus have a common, translocatable, autoregulatory control signal; (c) seedling vegetative growth and nodule number are independently controlled; and (d) two signals, inhibitor and promoter, may be involved in controlling legume nodule numbers.  相似文献   

10.
Some Effects of Competition and Density of Plants on Dry Weight Produced   总被引:1,自引:0,他引:1  
RENNIE  J. C. 《Annals of botany》1974,38(5):1003-1012
Plant weights were compared for different levels of shoot density,root density, shoot interaction and root interaction. Also,the effects of these treatments on the shoot—root ratiowere studied. Plant weight increased with decreases in shootand root density. Generally, plants grown with shoots or rootsintermingled with those of adjacent plants had greater weightthan those grown with shoots or roots separated. Competitionwas detected only at the highest shoot density where adjacentplants with isolated roots had greater weight than adjacentplants with intermingled roots. This is hypothesized to be aphytotoxic effect due to shoot confinement. No effects of densityor intermingling on the shoot-root ratio were evident.  相似文献   

11.
The levels of indol-3yl-acetic acid and gibberellins were determined in shoots and storage roots of radish (Raphanus sativus L.) at various times during the vegetative growth cycle of control plants and plants in which the root to shoot ratio was modified by daminozide treatment. In control plants the onset of storage organ growth was preceded by a change in the hormone root to shoot ratio to favour the root. There was a general reduction in hormone levels in daminozide-treated plants but the pattern of their distribution in roots and shoots was very similar to that in control plants. Thus the effects of daminozide on increased storage root growth cannot be explained in terms of altered root to shoot hormone ratios.  相似文献   

12.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

13.
While the importance of cortical aerenchyma in flood tolerance is well established, this pathway for gaseous exchange is often destroyed during secondary growth. For woody species, therefore, an additional pathway must develop for oxygen to reach submerged tissues. In this paper we examine the potential for the aerenchymatous phellem (cork) of Lythrum salicaria L. to provide a pathway for gas transport from shoots to roots and assess its importance in flood tolerance. Plants in which the continuity of the aerenchymatous phellem between shoots and roots was broken showed a significant reduction in oxygen levels in roots, but no difference in carbon dioxide levels compared with controls that retained an intact phellem. These plants also had a greater total shoot height and shoot dry weight, and an increase in shoot/root dry mass ratios compared with controls. Total dry weight was not significantly affected by this treatment. This study is the first to show that the aerenchymatous phellem can provide a pathway for gaseous exchange between roots and shoots and can influence plant morphology and patterns of resource allocation. This suggests that this tissue may play a significant role in the flood tolerance of a woody plant.  相似文献   

14.
We describe the involvement of abscisic acid (ABA) in the control of differential growth of roots and shoots of nutrient limited durum wheat plants. A ten-fold dilution of the optimal concentration of nutrient solution inhibited shoot growth, while root growth remained unchanged, resulting in a decreased shoot/root ratio. Addition of fluridone (inhibitor of ABA synthesis) prevented growth allocation in favour of the roots. This suggests the involvement of ABA in the redirecting of growth in favour of roots under limited nutrient supply. The ABA content was greater in shoots and growing apical root parts of starved plants than in nutrient sufficient plants. Accumulation of ABA in shoots of nutrient deficient plants was linked to a decrease in leaf turgor. Increased flow of ABA in the phloem apparently contributed to the accumulation of ABA in the apical part of the roots. Thus, partitioning of growth between roots and shoots of wheat plants limited in mineral nutrients appears to be modulated by accumulation of ABA in roots. This ABA may originate in the shoots, where its synthesis is stimulated by the loss of leaf turgor.  相似文献   

15.

An efficient plant regeneration protocol was developed for Basilicum polystachyon (L.) Moench using shoot tip from in vitro germinated plant. Both shoot multiplication and root induction were initiated from shoot tip explants in Murashige and Skoog’s (MS) basal medium supplemented with N6-benzylaminopurine (BAP) and 6-furfurylaminopurine (Kin) combination with 1-naphthaleneacetic acid (NAA) and without any plant growth regulator. Among the different concentrations and combinations of growth regulators, the highest number of shoots per explants was induced on 13.32 μM BAP with 0.53 μM NAA. It was also found that the multiplication of shoots along with roots induced in MS medium without any plant growth regulators. The in vitro grown plants were successfully hardened and acclimatized in the field with a 99% survival rate. The results obtained from HPLC analysis established the presence of a significant amount of endogenous auxin, viz. indole-3-acetic acid acid and indole-3-butyric acid in the shoot and root tips of B. polystachyon. This is the first report of a successful multiplication of B. polystachyon in absence of plant growth regulators and the presence of an abundant quantity of endogenous auxin in root and shoot tips using Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) coupled with ultraviolet–visible (UV–Vis) detector.

  相似文献   

16.
J C Cheng  K A Seeley    Z R Sung 《Plant physiology》1995,107(2):365-376
New cells are produced from the meristematic tissues located at the shoot and root tip throughout the life of higher plants. To investigate the genetic mechanism regulating meristematic activity, we isolated and characterized four single-gene, recessive mutants in Arabidopsis thaliana called root meristemless (rml). Complementation tests identified two RML loci; RML1 maps to chromosome IV and RML2 maps to chromosome III. These mutants produce normal embryonic roots that either did not undergo or experienced limited cell division following germination, resulting in primary roots of less than 2.0 mm in length. Mutants can produce lateral and adventitious roots, which can grow to a length comparable to the embryonic root and arrest, indicating that the growth arrest is unrelated to the embryonic dormancy process. Neither the addition of growth regulators to the media nor the removal of shoots can rescue mutant roots from growth arrest, indicating that the mutant phenotype is not caused by a shortage of known growth regulators or by a transmissible shoot inhibitor. Normal cell division ability in mutant embryo, shoot, and callus cells indicates that the RML gene functions are not part of the general cell division processes; rather, they are involved specifically in activating the cell division cycle in the root apical cells.  相似文献   

17.
Two experiments were carried out to study physiological effects of vesicular-arbuseular mycorrhizal infection on Plantago major L., ssp. pleiosperma (Pilger). In the first experiment, infection by the Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe increased growth, shoot to root ratio, P concentrations in both shoot and roots and total uptake of P per plant. The percentages of dry matter in both shoot and roots were lower in mycorrhizal plants.
In the second experiment different P treatments were applied to both mycorrhizal and non-mycorrhizal P. major plants to separate any effects of mycorrhizal infection from increased uptake of P. In addition to the effects found in the first experiment, mycorrhizal, P, and mycorrhizal x P interaction effects were found on root respiration rate and the concentration of soluble sugars in the roots. No clear effects on total dry weight, N and starch concentrations in shoot and roots and sugar concentraion in the shoot were found. Irrespective of the mycorrhizal treatment, increased P concentration in the shoot correlated with an increased shoot to root ratio and root respiration rate, and a decreased percentage dry matter and sugar concentration in the roots. However, the root respiration rate and the P concentration in the roots of mycorrhizal plants were enhanced more than expected from the increased P concentrations in the shoots of these plants.  相似文献   

18.
Summary Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.  相似文献   

19.
Patterns of root/shoot carbon allocation within plants have been studied at length. The extent, however, to which patterns of carbon allocation from shoots to roots affect the timing and quantity of organic carbon release from roots to soil is not known. We employed a novel approach to study how natural short-term variation in the allocation of carbon to roots may affect rhizosphere soil biology. Taking advantage of the semi-determinate phenology of young northern red oak (Quercus rubra L.), we examined how pulsed delivery of carbon from shoots to roots affected dynamics of soil respiration as well as microbial biomass and net nitrogen mineralization in the rhizosphere. Young Q. rubra exhibit (1) clear switches in the amount of carbon allocated below-ground that are non-destructively detected simply by observing pulsed shoot growth above-ground, and (2) multiple switches in internal carbon allocation during a single growing season, ensuring our ability to detect short-term effects of plant carbon allocation on rhizosphere biology separate from longer-term seasonal effects. In both potted oaks and oaks rooted in soil, soil respiration varied inversely with shoot flush stage through several oak shoot flushes. In addition, upon destructive harvest of potted oaks, microbial biomass in the rhizosphere of saplings with actively flushing shoots was lower than microbial biomass in the rhizosphere of saplings with shoots that were not flushing. Given that plants have evolved with their roots in contact with soil microbes, known species-specific carbon allocation patterns within plants may provide insight into interactions among roots, symbionts, and free-living microbes in the dynamic soil arena.  相似文献   

20.
It is known that treatments enhancing shoot formation often suppress root formation and vice versa. It would be of interest to know if such negative correlations between formation of roots and shoots were also present among genetically different plants, given the same treatment, to ensure that selection for superior shoot formation would not lead to inadvertent decreases in the capacity for root formation. Height and dry weight of micropropagated shoot clusters and the numbers of shoots and roots were measured in 95 seedling clones. Within clones, shoot size was negatively correlated with number of shoots and positively correlated with number of roots. Among clones, however, the number of shoots was not correlated with the size of shoots, but positively correlated with the number of roots. While it is difficult to devise treatments that simultaneously optimize the initiation of roots and shoots, it is thus possible to select for fast-growing clones without compromising root formation.Abbreviations CM clonal means - DCM deviation from clonal means  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号