首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
In Rhizobium meliloti, expression of the nodulation genes (nod and nol genes) is under both positive and negative controls. These genes are activated by the products of the three related nodD genes, in conjunction with signal molecules from the host plants. We showed that negative regulation is mediated by a repressor protein, binding to the overlapping nodD1 and nodA as well as to the nodD2 promoters. The encoding gene, termed nolR, was identified and cloned from strain 41. By subcloning, deletion and Tn5 mutagenesis, a region of 594 base-pairs was found to be necessary and sufficient for repressor production in strains of R. meliloti lacking the repressor or in Escherichia coli. Sequence analysis revealed that nolR encodes a 13,349 Da protein, which is in agreement with the molecular weight of the NolR protein, determined after purification by affinity chromatography, utilizing long synthetic DNA multimers of the 21 base-pair conserved repressor-binding sequence. Our data suggest that the native NolR binds to the operator site in dimeric form. The NolR contains a helix-turn-helix motif, which shows homology to the DNA-binding sequences of numerous prokaryotic regulatory proteins such as the repressor XylR or the activator NodD and other members of the LysR family. Comparison of the putative DNA-binding helix-turn-helix motifs of a large number of regulatory proteins pointed to a number of novel regularities in this sequence. Hybridizations with an internal nolR fragment showed that sequences homologous to the nolR gene are present in all R. meliloti isolates tested, even in those that do not produce the repressor. In another species, such as Rhizobium leguminosarum, where NodD is autoregulated, however, such sequences were not detected.  相似文献   

2.
3.
Proteome analysis revealed that two long-chain N-acyl homoserine lactones (AHLs) produced by Sinorhizobium meliloti 1021 induced significant differences in the accumulation of more than 100 polypeptides in early-log-phase cultures of the wild type. Fifty-six of the corresponding proteins have been identified by peptide mass fingerprinting. The proteins affected by addition of these two AHLs had diverse functions in carbon and nitrogen metabolism, energy cycles, metabolite transport, DNA synthesis, and protein turnover. Two hours of exposure to 3-oxo-C(16:1)-homoserine lactone (3-oxo-C(16:1)-HL) affected the accumulation of 40 of the 56 identified proteins, whereas comparable exposure to C(14)-HL affected 13 of the 56 proteins. Levels of four proteins were affected by both AHLs. Exposure to 3-oxo-C(16:1)-HL for 8 h affected the accumulation of 17 proteins, 12 of which had reduced accumulation. Of the 80 proteins identified as differing in accumulation between early-log- and early-stationary-phase cultures, only 13 were affected by exposure to 3-oxo-C(16:1)-HL or C(14)-HL. These results provide a foundation for future studies of the functions regulated by AHL quorum sensing in S. meliloti and help to establish proteomic analysis as a powerful global approach to the identification of quorum-sensing regulatory patterns in wild-type bacteria.  相似文献   

4.
The N-acyl homoserine lactone (AHL) quorum-sensing signals produced by Sinorhizobium meliloti strains AK631 and 1021 when cultured in a defined glucose-nitrate medium were identified by gas chromatography/mass spectrometry (GC/MS) and electrospray ionization tandem mass spectrometry (ESI MS/MS). Both strains synthesized several long-chain AHLs. Defined medium cultures of strain AK631 synthesized a complex mixture of AHLs with short acyl side chains. Strain 1021 produced no short-chain AHLs when grown on defined medium and made a somewhat different set of long-chain AHLs than previously reported for cultures in rich medium. While the two strains produced several AHLs in common, the differences in AHLs produced suggest that there may be significant differences in their patterns of quorum-sensing regulation.  相似文献   

5.
6.
Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.  相似文献   

7.
Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum . A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima ( Rhizobium, Sinorhizobium and Mesorhizobium ) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella .  相似文献   

8.
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.  相似文献   

9.
Baier R  Schiene K  Kohring B  Flaschel E  Niehaus K 《Planta》1999,210(1):157-164
Alfalfa (Medicago sativa L.) suspension cultures respond to yeast elicitors with a strong alkalinization of the culture medium, a transient synthesis of activated oxygen species, and typical late defence reactions such as phytoalexin accumulation and increased peroxidase activity. The alkalinization reaction as well as the oxidative burst were also observed when tobacco (Nicotiana tabacum L.) cell-suspension cultures were treated with yeast elicitors. Depending on the degree of polymerization, N-acetyl chitin oligomers induced the alkalinization response in both plant cell-suspension cultures, while only tobacco cell cultures developed an oxidative burst. Suspension-cultured tobacco cells responded to Sinorhizobium meliloti nodulation factors with a maximal alkalinization of 0.25 pH units and a remarkable oxidative burst. In contrast, addition of Sinorhizobium meliloti nodulation factors to suspension-cultured alfalfa cells induced a slight acidification of the culture medium, instead of an alkalinization, but no oxidative burst. Received: 23 November 1998 / Accepted: 23 June 1999  相似文献   

10.
The sinorhizobia isolated from root nodules of Acacia species native of Mexico constitute a diverse group of bacteria on the basis of their metabolic enzyme electromorphs but share restriction patterns of the PCR products of 16S rRNA genes and a common 500 kb symbiotic plasmid. They are distinguished from other Sinorhizobium species by their levels of DNA-DNA hybridization and the sequence of 16S rRNA and nifH genes. nolR gene hybridization patterns were found useful to identify sinorhizobia and characterize species. A new species, Sinorhizobium americanus, is described and the type strain is CFNEI 156 from Acacia acatlensis.  相似文献   

11.
In Rhizobium meliloti , the genes required for nodulation of legume hosts are under the control of DNA regulatory sequences called nod boxes. In this paper, we have characterized three host-specific nodulation genes, which form a flavonoid-inducible operon down-stream of the nod box n5. The first gene of this operon is identical to the nodL gene identified by Baev and Kondorosi (1992) in R. meliloti strain AK631. The product of the second gene, NoeA, presents some homology with a methyl transferase. nodL mutants synthesize Nod factors lacking the O -acetate substituent. In contrast, in strains carrying a mutation in either noeA or noeB , no modification in Nod-factor structure or production could be detected. On particular hosts, such as Medicago littoralis , mutants of the n5 operon showed a very weak nodule-forming ability, associated with a drastic decrease in the number of infection threads, while nodulation of Medicago truncatula or Melilotus alba was not affected. Thus, nodL , noeA and noeB are host-specific nodulation genes. By using a gain-of-function approach, we showed that the presence of nodL , and hence of O -acetylated Nod factors, is a major prerequisite for confering the ability to nodulate alfalfa upon the heterologous bacterium Rhizobium tropici .  相似文献   

12.
pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响   总被引:17,自引:2,他引:17  
1 引  言土壤 pH对根瘤菌结瘤的影响一直是微生物学和微生物生态学研究的内容之一[4] .在对大豆根瘤菌的研究中 ,早期的研究主要集中于生长慢、产碱的大豆慢生根瘤菌 (Bradyrhizobiumjaponicum) [1,2 ] .1982年 ,Keyser等[3] 报道了一类生长快、产酸的大豆根瘤菌 ,并命名为费氏中华根瘤菌 (Sinorhzobium fredi i) .由于它们在生理特性方面存在着明显的差异 ,其结瘤能力以及环境的生物、物理和化学等因素对结瘤的影响一直受到广泛的重视 .本文研究了偏酸、偏碱的 pH对费氏中华根瘤菌…  相似文献   

13.
The rkp-3 region is indispensable for capsular polysaccharide (K antigen) synthesis in Sinorhizobium meliloti Rm41. Strain Rm41 produces a K antigen of strain-specific structure, designated as the KR5 antigen. The data in this report show that the rkp-3 gene region comprises 10 open reading frames involved in bacterial polysaccharide synthesis and export. The predicted amino acid sequences for the rkpL-Q gene products are homologous to enzymes involved in the production of specific sugar moieties, while the putative products of the rkpRST genes show a high degree of similarity to proteins required for transporting polysaccharides to the cell surface. Southern analysis experiments using gene-specific probes suggest that genes involved in the synthesis of the precursor sugars are unique in strain Rm41, whereas sequences coding for export proteins are widely distributed among Sinorhizobium species. Mutations in the rkpL-Q genes result in a modified K antigen pattern and impaired symbiotic capabilities. On this basis, we suggest that these genes are required for the production of the KR5 antigen that is necessary for S. meliloti Rm41 exoB (AK631)-alfalfa (Medicago sativa) symbiosis.  相似文献   

14.
A simple method is described for the selection and isolation of restriction- and modificationless mutants in Escherichia coli K-12 by using the following properties: (i) the temperature-sensitive repressor activity of phage lambdacI857; (ii) a mutant of lambda phage defective in integration and the establishment of repression (lambdab2cI); (iii) a virulent lambda phage insensitive to the repressor activity. The final yield of spontaneously arising rk-mk+ and rk-mk- mutants from stationary-phase cultures was about 5% of the surviving cells.  相似文献   

15.
To improve symbiotic nitrogen fixation on alfalfa plants, Sinorhizobium meliloti strains containing different average copy numbers of a symbiotic DNA region were constructed by specific DNA amplification (SDA). A DNA fragment containing a regulatory gene (nodD1), the common nodulation genes (nodABC), and an operon essential for nitrogen fixation (nifN) from the nod regulon region of the symbiotic plasmid pSyma of S. meliloti was cloned into a plasmid unable to replicate in this organism. The plasmid then was integrated into the homologous DNA region of S. meliloti strains 41 and 1021, which resulted in a duplication of the symbiotic region. Sinorhizobium derivatives carrying further amplification were selected by growing the bacteria in increased concentrations of an antibiotic marker present in the integrated vector. Derivatives of strain 41 containing averages of 3 and 6 copies and a derivative of strain 1021 containing an average of 2.5 copies of the symbiotic region were obtained. In addition, the same region was introduced into both strains as a multicopy plasmid, yielding derivatives with an average of seven copies per cell. Nodulation, nitrogenase activity, plant nitrogen content, and plant growth were analyzed in alfalfa plants inoculated with the different strains. The copy number of the symbiotic region was critical in determining the plant phenotype. In the case of the strains with a moderate increase in copy number, symbiotic properties were improved significantly. The inoculation of alfalfa with these strains resulted in an enhancement of plant growth.  相似文献   

16.
Sesbania species can establish symbiotic interactions with rhizobia from two taxonomically distant genera, including the Sesbania rostrata stem-nodulating Azorhizobium sp. and Azorhizobium caulinodans and the newly described Sinorhizobium saheli and Sinorhizobium teranga bv. sesbaniae, isolated from the roots of various Sesbania species. A collection of strains from both groups were analyzed for their symbiotic properties with different Sesbania species. S. saheli and S. teranga bv. sesbaniae strains were found to effectively stem nodulate Sesbania rostrata, showing that stem nodulation is not restricted to Azorhizobium. Sinorhizobia and azorhizobia, however, exhibited clear differences in other aspects of symbiosis. Unlike Azorhizobium, S. teranga bv. sesbaniae and S. saheli did not induce effective stem nodules on plants previously inoculated on the roots, although stem nodulation was arrested at different stages. For Sesbania rostrata root nodulation, Sinorhizobium appeared more sensitive than Azorhizobium to the presence of combined nitrogen. S. saheli and S. teranga bv. sesbaniae were effective symbionts with all Sesbania species tested, while Azorhizobium strains fixed nitrogen only in symbiosis with Sesbania rostrata. In a simple screening test, S. saheli and S. teranga bv. sesbaniae were incapable of asymbiotic nitrogenase activity. Thus, Azorhizobium can easily be distinguished from Sinorhizobium among Sesbania symbionts on the basis of symbiotic and free-living nitrogen fixation. The ability of Azorhizobium to overcome the systemic plant control appears to be a stem adaptation function. This last property, together with its host-specific symbiotic nitrogen fixation, makes Azorhizobium highly specialized for stem nodulation of the aquatic legume Sesbania rostrata.  相似文献   

17.
B R Levin  F M Stewart  V A Rice 《Plasmid》1979,2(2):247-260
A mass action model for the infectious transmission of conjugative plasmids and procedures to estimate its parameters are presented. The suitability of this model as an analog of the kinetics of conjugative plasmid transmission is examined with batch and chemostat populations of Escherichia coli K-12 and three of its plasmids, F-lac-pro, R1 (Km-Cm-Ap), and R1-drd-19 (Km-Cm-Ap). Evidence is presented that this mass action model, with a unique and constant rate parameter, represents a reasonable analog of the kinetics of plasmid transfer for bacterial populations dividing at a constant rate in either exponentially growing cultures or at equilibrium in chemostats. As anticipated from this model magnitudes of the transfer rate constant for these plasmids appear to be relatively insensitive to both total cell density and the donor-recipient ratio. For all plasmids, the value of the transfer rate constant in rapidly dividing (exponentially growing) cultures is considerably greater than its corresponding value in slowly dividing, chemostat equilibrium cultures and the values of the transfer rate constant of the permanently derepressed plasmids F-lac-pro and R1-drd-19 are considerably greater than that of the wild-type, repressed transfer plasmid R1. The implications of this apparent fit to a mass action model are discussed and a recommendation is made to use the transfer rate constant as the measure of the fertility of conjugative plasmids.  相似文献   

18.
Enhanced operator binding by trp superrepressors of Escherichia coli   总被引:8,自引:0,他引:8  
The trp repressor of Escherichia coli binds to the operators of three operons concerned with tryptophan biosynthesis and regulates their expression. trp superrepressors can repress expression of the trp operon in vivo at lower tryptophan concentrations than those required by the wild-type repressor. The five known superrepressors have been purified and characterized using a modified filter binding assay. In four of the five superrepressors, EK13, EK18, DN46 and EK49, negatively charged wild-type residues located on the surface of the repressor that faces the operator are replaced by positively charged or neutral residues. Each of these proteins has higher affinity for the trp operator than wild-type repressor. Decreased rates of dissociation of the repressor-operator complex were found to be responsible for the higher affinities. The fifth superrepressor, AV77, has an amino acid substitution in the turn of the helix-turn-helix DNA-binding motif. This superrepressor was indistinguishable from wild-type repressor in our filter binding assay. We conclude that rapid dissociation of repressor from operator is important for trp repressor function in vivo. The negatively charged wild-type residues that are replaced in superrepressors are probably responsible for the characteristic rapid dissociation of the trp repressor from the trp operator.  相似文献   

19.
In this study, we addressed the effects of N limitation in Bradyrhizobium japonicum for its association with soybean roots. The wild-type strain LP 3001 grew for six generations with a growth rate of 1.2 day(-1) in a minimal medium with 28 mM mannitol as the carbon source and with the N source [(NH(4))(2)SO(4)] limited to only 20 microM. Under these conditions, the glutamine synthetase (GS) activity was five to six times higher than in similar cultures grown with 1 or 0.1 mM (NH(4))(2)SO(4). The NtrBC-inducible GSII form of this enzyme accounted for 60% of the specific activity in N-starved rhizobia, being negligible in the other two cultures. The exopolysaccharide (EPS) and capsular polysaccharide (CPS) contents relative to cell protein were significantly higher in the N-starved cultures, but on the other hand, the poly-3-hydroxybutyrate level did not rise in comparison with N-sufficient cultures. In agreement with the accumulation of CPS in N-starved cultures, soybean lectin (SBL) binding as well as stimulation of rhizobial adsorption to soybean roots by SBL pretreatment were higher. The last effect was evident only in cultures that had not entered stationary phase. We also studied nodC gene induction in relation to N starvation. In the chromosomal nodC::lacZ fusion Bj110-573, nodC gene expression was induced by genistein 2.7-fold more in N-starved young cultures than in nonstarved ones. In stationary-phase cultures, nodC gene expression was similarly induced in N-limited cultures, but induction was negligible in cultures limited by another nutrient. Nodulation profiles obtained with strain LP 3001 grown under N starvation indicated that these cultures nodulated faster. In addition, as culture age increased, the nodulation efficiency decreased for two reasons: fewer nodules were formed, and nodulation was delayed. However, their relative importance was different according to the nutrient condition: in older cultures the overall decrease in the number of nodules was the main effect in N-starved cultures, whereas a delay in nodulation was more responsible for a loss in efficiency of N-sufficient cultures. Competition for nodulation was studied with young cultures of two wild-type strains differing only in their antibiotic resistance, the N-starved cultures being the most competitive.  相似文献   

20.
Stachydrine (proline betaine) can be used by Sinorhizobium meliloti as a source of carbon and nitrogen. Catabolism depends on an initial N-demethylation, after which the resultant N-methyl proline enters general metabolism. Deletion and insertion mutagenesis demonstrated that the information necessary for catabolism is carried on the symbiotic plasmid (pSym) distal to nodD2 and the nod-nif cluster. Sequencing of an 8.5kb fragment spanning this region revealed four open reading frames with functional homology to known proteins, including a putative monooxygenase and a putative NADPH-FMN-reductase, which were shown by insertional and frame-shift mutagenesis to be necessary for stachydrine catabolism. Other open reading frames, encoding a putative flavoprotein and a repressor, were judged not to be required for stachydrine catabolism, since they were not included in a fragment capable of complementing a deletion of the entire stc region. Sequence and mutagenesis data suggest that stachydrine is demethylated by an iron-sulfur monooxygenase of the Rieske type with a requirement for a specific reductase. The stc catabolic cluster, therefore, resembles xenobiotic degradation in other bacteria and recalls rhizopine catabolism in S. meliloti. Stachydrine appears to have multiple roles in osmoprotection, nutrition and nodulation. Genes involved in stachydrine catabolism are also necessary for carnitine degradation; thus, they could be important in the catabolism of a variety of root exudates and mediate other relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号