首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ALAD porphyria is a rare porphyric disorder, with five documented compound heterozygous patients, and it is caused by a profound lack of porphobilinogen synthase (PBGS) activity. PBGS, also called "delta-aminolevulinate dehydratase," is encoded by the ALAD gene and catalyzes the second step in the biosynthesis of heme. ALAD porphyria is a recessive disorder; there are two common variant ALAD alleles, which encode K59 and N59, and eight known porphyria-associated ALAD mutations, which encode F12L, E89K, C132R, G133R, V153M, R240W, A274T, and V275M. Human PBGS exists as an equilibrium of functionally distinct quaternary structure assemblies, known as "morpheeins," in which one functional homo-oligomer can dissociate, change conformation, and reassociate into a different oligomer. In the case of human PBGS, the two assemblies are a high-activity octamer and a low-activity hexamer. The current study quantifies the morpheein forms of human PBGS for the common and porphyria-associated variants. Heterologous expression in Escherichia coli, followed by separation of the octameric and hexameric assemblies on an ion-exchange column, showed that the percentage of hexamer for F12L (100%), R240W (80%), G133R (48%), C132R (36%), E89K (31%), and A274T (14%) was appreciably larger than for the wild-type proteins K59 and N59 (0% and 3%, respectively). All eight porphyria-associated variants, including V153M and V275M, showed an increased propensity to form the hexamer, according to a kinetic analysis. Thus, all porphyria-associated human PBGS variants are found to shift the morpheein equilibrium for PBGS toward the less active hexamer. We propose that the disequilibrium of morpheein assemblies broadens the definition of conformational diseases beyond the prion disorders and that ALAD porphyria is the first example of a morpheein-based conformational disease.  相似文献   

2.
3.
Human porphobilinogen synthase (PBGS) can exist in two dramatically different quaternary structure isoforms, which have been proposed to be in dynamic equilibrium. The quaternary structure isoforms of PBGS result from two alternative conformations of the monomer; one monomer structure assembles into a high activity octamer, whereas the other monomer structure assembles into a low activity hexamer. The kinetic behavior of these oligomers led to the hypothesis that turnover facilitates the interconversion of the oligomeric structures. The current work demonstrates that the interactions of ligands at the enzyme active site promote the structural interconversion between human PBGS quaternary structure isoforms, favoring formation of the octamer. This observation illustrates that the assembly and disassembly of oligomeric proteins can be facilitated by the protein motions that accompany enzymatic catalysis.  相似文献   

4.
Porphobilinogen synthase (PBGS) is an obligate oligomer that can exist in functionally distinct quaternary states of different stoichiometries, which are called morpheeins. The morpheein concept describes an ensemble of quaternary structure isoforms wherein different structures of the monomer dictate different multiplicities of the oligomer (Jaffe, E. K. (2005) Trends Biochem. Sci. 30, 490-497). Human PBGS assembles into long-lived morpheeins and has been shown to be capable of forming either a high activity octamer or a low activity hexamer (Breinig, S., Kervinen, J., Stith, L., Wasson, A. S., Fairman, R., Wlodawer, A., Zdanov, A., and Jaffe, E. K. (2003) Nat. Struct. Biol. 10, 757-763). All PBGS monomers contain an alphabeta-barrel domain and an N-terminal arm domain. The N-terminal arm structure varies among PBGS morpheeins, and the spatial relationship between the arm and the barrel dictates the different quaternary assemblies. We have analyzed the structures of human PBGS morpheeins for key interactions that would be predicted to affect the oligomeric assembly. Examples of individual mutations that shift assembly of human PBGS away from the native octamer are R240A and W19A. The alternate morpheeins of human PBGS variants R240A and W19A are chromatographically separable from each other and kinetically distinct; their structure and dynamics have been characterized by native gel electrophoresis, dynamic light scattering, and analytical ultracentrifugation. R240A assembles into a metastable hexamer, which can undergo a reversible conversion to the octamer in the presence of substrate. The metastable nature of the R240A hexamer supports the hypothesis that octameric and hexameric morpheeins of PBGS are very close in energy. W19A assembles into a mixture of dimers, which appear to be stable.  相似文献   

5.
Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of tetrapyrroles (such as heme and chlorophyll). Although the predominant oligomeric form of this enzyme, as inferred from many crystal structures, is that of a homo-octamer, a rare human PBGS allele, F12L, reveals the presence of a hexameric form. Rearrangement of an N-terminal arm is responsible for this oligomeric switch, which results in profound changes in kinetic behavior. The structural transition between octamer and hexamer must proceed through an unparalleled equilibrium containing two different dimer structures. The allosteric magnesium, present in most PBGS, has a binding site in the octamer but not in the hexamer. The unprecedented structural rearrangement reported here relates to the allosteric regulation of PBGS and suggests that alternative PBGS oligomers may function in a magnesium-dependent regulation of tetrapyrrole biosynthesis in plants and some bacteria.  相似文献   

6.
Apicomplexan parasites (including Plasmodium spp. and Toxoplasma gondii) employ a four-carbon pathway for de novo heme biosynthesis, but this pathway is distinct from the animal/fungal C4 pathway in that it is distributed between three compartments: the mitochondrion, cytosol, and apicoplast, a plastid acquired by secondary endosymbiosis of an alga. Parasite porphobilinogen synthase (PBGS) resides within the apicoplast, and phylogenetic analysis indicates a plant origin. The PBGS family exhibits a complex use of metal ions (Zn2+ and Mg2+) and oligomeric states (dimers, hexamers, and octamers). Recombinant T. gondii PBGS (TgPBGS) was purified as a stable ∼320-kDa octamer, and low levels of dimers but no hexamers were also observed. The enzyme displays a broad activity peak (pH 7–8.5), with a Km for aminolevulinic acid of ∼150 μm and specific activity of ∼24 μmol of porphobilinogen/mg of protein/h. Like the plant enzyme, TgPBGS responds to Mg2+ but not Zn2+ and shows two Mg2+ affinities, interpreted as tight binding at both the active and allosteric sites. Unlike other Mg2+-binding PBGS, however, metal ions are not required for TgPBGS octamer stability. A mutant enzyme lacking the C-terminal 13 amino acids distinguishing parasite PBGS from plant and animal enzymes purified as a dimer, suggesting that the C terminus is required for octamer stability. Parasite heme biosynthesis is inhibited (and parasites are killed) by succinylacetone, an active site-directed suicide substrate. The distinct phylogenetic, enzymatic, and structural features of apicomplexan PBGS offer scope for developing selective inhibitors of the parasite enzyme based on its quaternary structure characteristics.  相似文献   

7.
The origin recognition complex (ORC) of Saccharomyces cerevisiae binds origin DNA and cooperates with Cdc6 and Cdt1 to load the replicative helicase MCM2–7 onto DNA. Helicase loading involves two MCM2–7 hexamers that assemble into a double hexamer around double-stranded DNA. This reaction requires ORC and Cdc6 ATPase activity, but it is unknown how these proteins control MCM2–7 double hexamer formation. We demonstrate that mutations in Cdc6 sensor-2 and Walker A motifs, which are predicted to affect ATP binding, influence the ORC–Cdc6 interaction and MCM2–7 recruitment. In contrast, a Cdc6 sensor-1 mutant affects MCM2–7 loading and Cdt1 release, similar as a Cdc6 Walker B ATPase mutant. Moreover, we show that Orc1 ATP hydrolysis is not involved in helicase loading or in releasing ORC from loaded MCM2–7. To determine whether Cdc6 regulates MCM2–7 double hexamer formation, we analysed complex assembly. We discovered that inhibition of Cdc6 ATPase restricts MCM2–7 association with origin DNA to a single hexamer, while active Cdc6 ATPase promotes recruitment of two MCM2–7 hexamer to origin DNA. Our findings illustrate how conserved Cdc6 AAA+ motifs modulate MCM2–7 recruitment, show that ATPase activity is required for MCM2–7 hexamer dimerization and demonstrate that MCM2–7 hexamers are recruited to origins in a consecutive process.  相似文献   

8.
A morpheein is a homo-oligomeric protein that can adopt different nonadditive quaternary assemblies (morpheein forms) with different functionalities. The human porphobilinogen synthase (PBGS) morpheein forms are a high activity octamer, a low activity hexamer, and two structurally distinct dimer conformations. Conversion between hexamer and octamer involves dissociation to dimers, conformational change at the dimer level, followed by association to the alternate assembly. The current work promotes an alternative and novel view of the physiologically relevant dimeric structures, which are derived from the crystal structures, but are distinct from the asymmetric units of their crystal forms. Using a well characterized heteromeric system (WT+F12L; Tang, L. et al. (2005) J. Biol. Chem. 280, 15786-15793), extensive study of the human PBGS morpheein reequilibration process now reveals that the intervening dimers do not dissociate to monomers. The morpheein equilibria of wild type (WT) human PBGS are found to respond to changes in pH, PBGS concentration, and substrate turnover. Notably, the WT enzyme is predominantly an octamer at neutral pH, but increasing pH results in substantial conversion to lower order oligomers. Most significantly, the free energy of activation for the conversion of WT+F12L human PBGS heterohexamers to hetero-octamers is determined to be the same as that for the catalytic conversion of substrate to product by the octamer, remarkably suggesting a common rate-limiting step for both processes, which is postulated to be the opening/closing of the active site lid.  相似文献   

9.
The enzyme porphobilinogen synthase (PBGS) can exist in different nonadditive homooligomeric assemblies, and under appropriate conditions, the distribution of these assemblies can respond to ligands such as metals or substrate. PBGS from most organisms was believed to be octameric until work on a rare allele of human PBGS revealed an alternate hexameric assembly, which is also available to the wild-type enzyme at elevated pH [Breinig, S., et al. (2003) Nat. Struct. Biol. 10, 757-763]. Herein, we establish that the distribution of pea PBGS quaternary structures also contains octamers and hexamers, using both sedimentation velocity and sedimentation equilibrium experiments. We report results in which the octamer dominates under purification conditions and discuss conditions that influence the octamer:hexamer ratio. As predicted by PBGS crystal structures from related organisms, in the absence of magnesium, the octameric assembly is significantly destabilized, and the oligomeric distribution is dominated largely by the hexameric assembly. Although the PBGS hexamer-to-octamer oligomeric rearrangement is well documented under some conditions, both assemblies are very stable (under AU conditions) in the time frame of our ultracentrifuge experiments.  相似文献   

10.
Recent crystallographic studies suggested that fully liganded human hemoglobin can adopt multiple quaternary conformations that include the two previously solved relaxed conformations, R and R2, whereas fully unliganded deoxyhemoglobin may adopt only one T (tense) quaternary conformation. An important unanswered question is whether R, R2, and other relaxed quaternary conformations represent different physiological states with different oxygen affinities. Here, we answer this question by showing the oxygen equilibrium curves of single crystals of human hemoglobin in the R and R2 state. In this study, we have used a naturally occurring mutant hemoglobin C (β6 Glu→Lys) to stabilize the R and R2 crystals. Additionally, we have refined the x-ray crystal structure of carbonmonoxyhemoglobin C, in the R and R2 state, to 1.4 and 1.8 Å resolution, respectively, to compare precisely the structures of both types of relaxed states. Despite the large quaternary structural difference between the R and R2 state, both crystals exhibit similar noncooperative oxygen equilibrium curves with a very high affinity for oxygen, comparable with the fourth oxygen equilibrium constant (K4) of human hemoglobin in solution. One small difference is that the R2 crystals have an oxygen affinity that is 2–3 times higher than that of the R crystals. These results demonstrate that the functional difference between the two typical relaxed quaternary conformations is small and physiologically less important, indicating that these relaxed conformations simply reflect a structural polymorphism of a high affinity relaxed state.  相似文献   

11.
The structure and unfolding of metal-free (apo) human wild-type SOD1 and three pathogenic variants of SOD1 (A4V, G93R, and H48Q) that cause familial amyotrophic lateral sclerosis have been studied with amide hydrogen/deuterium exchange and mass spectrometry. The results indicate that a significant proportion of each of these proteins exists in solution in a conformation in which some strands of the β-barrel (i.e. β2) are well protected from exchange at physiological temperature (37 °C), whereas other strands (i.e. β3 and β4) appear to be unprotected from hydrogen/deuterium exchange. Moreover, the thermal unfolding of these proteins does not result in the uniform incorporation of deuterium throughout the polypeptide but involves the local unfolding of different residues at different temperatures. Some regions of the proteins (i.e. the “Greek key” loop, residues 104–116) unfold at a significantly higher temperature than other regions (i.e. β3 and β4, residues 21–53). Together, these results show that human wild-type apo-SOD1 and variants have a partially unfolded β-barrel at physiological temperature and unfold non-cooperatively.  相似文献   

12.

Background

DC-SIGN expressed by dendritic cells captures HIV-1 resulting in trans-infection of CD4+ T-lymphocytes. However, BSSL (bile-salt stimulated lipase) binding to DC-SIGN interferes with HIV-1 capture. DC-SIGN binding properties of BSSL associate with the polymorphic repeated motif of BSSL exon 11. Furthermore, BSSL binds to HIV-1 co-receptor CXCR4. We hypothesized that BSSL modulates HIV-1 disease progression and emergence of CXCR4 using HIV-1 (X4) variants.

Results

The relation between BSSL genotype and HIV-1 disease progression and emergence of X4 variants was studied using Kaplan Meier and multivariate Cox proportional hazard analysis in a cohort of HIV-1 infected men having sex with men (n = 334, with n = 130 seroconverters). We analyzed the association of BSSL genotype with set-point viral load and CD4 cell count, both pre-infection and post-infection at viral set-point. The number of repeats in BSSL exon 11 were highly variable ranging from 10 to 18 in seropositive individuals and from 5–17 in HRSN with 16 repeats being dominant (>80% carry at least one allele with 16 repeats). We defined 16 to 18 repeats as high (H) and less than 16 repeats as low (L) repeat numbers. Homozygosity for the high (H) repeat number BSSL genotype (HH) correlated with high CD4 cell numbers prior to infection (p = 0.007). In HIV-1 patients, delayed disease progression was linked to the HH BSSL genotype (RH = 0.462 CI = 0.282–0.757, p = 0.002) as was delayed emergence of X4 variants (RH = 0.525, 95% CI = 0.290–0.953, p = 0.034). The LH BSSL genotype, previously found to be associated with enhanced DC-SIGN binding of human milk, was identified to correlate with accelerated disease progression in our cohort of HIV-1 infected MSM (RH = 0.517, 95% CI = 0.328–0.818, p = 0.005).

Conclusion

We identify BSSL as a marker for HIV-1 disease progression and emergence of X4 variants. Additionally, we identified a relation between BSSL genotype and CD4 cell counts prior to infection.  相似文献   

13.
Glutamate dehydrogenase (GDH) catalyzes reversible conversion between glutamate and 2-oxoglutarate using NAD(P)(H) as a coenzyme. Although mammalian GDH is regulated by GTP through the antenna domain, little is known about the mechanism of allosteric activation by leucine. An extremely thermophilic bacterium, Thermus thermophilus, possesses GDH with a unique subunit configuration composed of two different subunits, GdhA (regulatory subunit) and GdhB (catalytic subunit). T. thermophilus GDH is unique in that the enzyme is subject to allosteric activation by leucine. To elucidate the structural basis for leucine-induced allosteric activation of GDH, we determined the crystal structures of the GdhB-Glu and GdhA-GdhB-Leu complexes at 2.1 and 2.6 Å resolution, respectively. The GdhB-Glu complex is a hexamer that binds 12 glutamate molecules: six molecules are bound at the substrate-binding sites, and the remaining six are bound at subunit interfaces, each composed of three subunits. The GdhA-GdhB-Leu complex is crystallized as a heterohexamer composed of four GdhA subunits and two GdhB subunits. In this complex, six leucine molecules are bound at subunit interfaces identified as glutamate-binding sites in the GdhB-Glu complex. Consistent with the structure, replacement of the amino acid residues of T. thermophilus GDH responsible for leucine binding made T. thermophilus GDH insensitive to leucine. Equivalent amino acid replacement caused a similar loss of sensitivity to leucine in human GDH2, suggesting that human GDH2 also uses the same allosteric site for regulation by leucine.  相似文献   

14.
15.
The preparation and the antibacterial activity of alaremycin derivatives such as their CF3-derivatives and (R)- and (S)-4-oxo-5-acetylaminohexanoic acid for the porphobilinogen synthase (PBGS), were described. The IC50 values of the antibacterial activity of the prepared materials for the inhibitor of PBGS, were determined using PBGS assay.  相似文献   

16.
Classic models for the allosteric regulation of protein function consider an equilibrium among protein structures of constant oligomeric multiplicity. The morpheein (mor-phee'-in) concept expands this model to include a dynamic equilibrium of protein structures wherein a protein monomer can exist in more than one conformation and each monomer conformation dictates a different quaternary structure of finite multiplicity and different functionality. The morpheein concept provides a new framework for understanding allosteric regulation, kinetic cooperativity and hysteresis. Porphobilinogen synthase constitutes a prototype morpheein ensemble comprising several interconverting quaternary structure isoforms; one monomer conformation dictates assembly of a high-activity octamer, whereas an alternative monomer conformation dictates assembly of a low-activity hexamer. It is proposed here that the behavior of some other allosteric enzymes reflect dynamic morpheein equilibrium systems and six candidate proteins are enumerated.  相似文献   

17.
The oligomeric state of human porphobilinogen synthase (PBGS) [EC.4.2.1.24] is homooctamer, which consists of conformationally heterogenous subunits in the tertiary structure under air-saturated conditions. When PBGS is activated by reducing agent with zinc ion, a reservoir zinc ion coordinated by Cys223 is transferred in the active center to be coordinated by Cys122, Cys124, and Cys132 (Sawada et al. in J Biol Inorg Chem 10:199–207, 2005). The latter zinc ion serves as an electrophilic catalysis. In this study, we investigated a conformational change associated with the PBGS activation by reducing agent and zinc ion using analytical ultracentrifugation, negative staining electron microscopy, native PAGE, and enzyme activity staining. The results are in good agreement with our notion that the main component of PBGS is octamer with a few percent of hexamer and that the octamer changes spatial subunit arrangement upon reduction and further addition of zinc ion, accompanying decrease in f/f 0. It is concluded that redox-regulated PBGS activation via cleavage of disulfide bonds among Cys122, Cys124, and Cys132 and coordination with zinc ion is closely linked to change in the oligomeric state.  相似文献   

18.
Previous studies have reported the association between multiple genetic variants in the enamel-formation genes and the risk of dental caries with inconsistent results. We performed a systematic literature search of the PubMed, Cochrane Library, HuGE and Google Scholar databases for studies published before March 21, 2020 and conducted meta-, gene-based and gene-cluster analysis on the association between genetic variants in the enamel-formation genes and the risk of dental caries. We identified 21 relevant publications including a total of 24 studies for analysis. The genetic variant rs17878486 in AMELX was significantly associated with dental caries risk (OR = 1.40, 95% CI: 1.02–1.93, P = 0.037). We found no significant association between the risk of dental caries with rs12640848 in ENAM (OR = 1.15, 95% CI: 0.88–1.52, P = 0.310), rs1784418 in MMP20 (OR = 1.07, 95% CI: 0.76–1.49, P = 0.702) and rs3796704 in ENAM (OR = 1.06, 95% CI: 0.96–1.17, P = 0.228). Gene-based analysis indicated that multiple genetic variants in AMELX showed joint association with the risk of dental caries (6 variants; P < 10−5), so did genetic variants in MMP13 (3 variants; P = 0.004), MMP2 (3 variants; P < 10−5), MMP20 (2 variants; P < 10−5) and MMP3 (2 variants; P < 10−5). The gene-cluster analysis indicated a significant association between the genetic variants in this enamel-formation gene cluster and the risk of dental caries (P < 10−5). The present meta-analysis revealed that genetic variant rs17878486 in AMELX was associated with dental caries, and multiple genetic variants in the enamel-formation genes jointly contributed to the risk of dental caries, supporting the role of genetic variants in the enamel-formation genes in the etiology of dental caries.  相似文献   

19.
Human cytosolic NADP+-dependent malic enzyme (c-NADP-ME) is neither a cooperative nor an allosteric enzyme, whereas mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by fumarate. This study examines the molecular basis for the different allosteric properties and quaternary structural stability of m-NAD(P)-ME and c-NADP-ME. Multiple residues corresponding to the fumarate-binding site were mutated in human c-NADP-ME to correspond to those found in human m-NAD(P)-ME. Additionally, the crystal structure of the apo (ligand-free) human c-NADP-ME conformation was determined. Kinetic studies indicated no significant difference between the wild-type and mutant enzymes in Km,NADP, Km,malate, and kcat. A chimeric enzyme, [51-105]_c-NADP-ME, was designed to include the putative fumarate-binding site of m-NAD(P)-ME at the dimer interface of c-NADP-ME; however, this chimera remained nonallosteric. In addition to fumarate activation, the quaternary structural stability of c-NADP-ME and m-NAD(P)-ME is quite different; c-NADP-ME is a stable tetramer, whereas m-NAD(P)-ME exists in equilibrium between a dimer and a tetramer. The quaternary structures for the S57K/N59E/E73K/S102D and S57K/N59E/E73K/S102D/H74K/D78P/D80E/D87G mutants of c-NADP-ME are tetrameric, whereas the K57S/E59N/K73E/D102S m-NAD(P)-ME quadruple mutant is primarily monomeric with some dimer formation. These results strongly suggest that the structural features near the fumarate-binding site and the dimer interface are highly related to the quaternary structural stability of c-NADP-ME and m-NAD(P)-ME. In this study, we attempt to delineate the structural features governing the fumarate-induced allosteric activation of malic enzyme.  相似文献   

20.
Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号