首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DdCAD-1 is a 24-kD Ca2+-dependent cell– cell adhesion molecule that is expressed soon after the initiation of development in Dictyostelium cells. DdCAD-1 is present on the cell surface as well as in the cytosol. However, the deduced amino acid sequence of DdCAD-1 lacks a hydrophobic signal peptide or any predicted transmembrane domain, suggesting that it may be presented on the cell surface via a nonclassical transport mechanism. Here we report that DdCAD-1 is transported to the cell surface via contractile vacuoles, which are normally involved in osmoregulation. Immunofluorescence microscopy and subcellular fractionation revealed a preferential association of DdCAD-1 with contractile vacuoles. Proteolytic treatment of isolated contractile vacuoles degraded vacuole-associated calmodulin but not DdCAD-1, demonstrating that DdCAD-1 was present in the lumen. The use of hyperosmotic conditions that suppress contractile vacuole activity led to a dramatic decrease in DdCAD-1 accumulation on the cell surface and the absence of cell cohesiveness. Shifting cells back to a hypotonic condition after hypertonic treatments induced a rapid increase in DdCAD-1–positive contractile vacuoles, followed by the accumulation of DdCAD-1 on the cell membrane. 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, a specific inhibitor of vacuolar-type H+-ATPase and thus of the activity of contractile vacuoles, also inhibited the accumulation of DdCAD-1 on the cell surface. Furthermore, an in vitro reconstitution system was established, and isolated contractile vacuoles were shown to import soluble DdCAD-1 into their lumen in an ATP-stimulated manner. Taken together, these data provide the first evidence for a nonclassical protein transport mechanism that uses contractile vacuoles to target a soluble cytosolic protein to the cell surface.The cellular slime mold Dictyostelium discoideum transits from the solitary amoeboid state to an organized multicellular structure during development. This process is initiated in cells upon the depletion of nutrients, leading to the expression of many developmentally regulated genes and the chemotactic migration of cells in response to extracellular cAMP. Cells stream in concentric rings and/or spirals toward aggregation centers, giving rise to multicellular entities called pseudoplasmodia or slugs. The migrating slugs eventually culminate in the formation of fruiting bodies consisting of primarily spores and stalk cells (for review see Loomis, 1975).Multicellularity during development is maintained by the expression of cell–cell adhesion molecules, which fall into two broad categories based on their sensitivity to EDTA (for reviews see Gerisch, 1980; Siu et al., 1988; Siu, 1990; Fontana, 1995; Bozzaro and Ponte, 1995). There are two types of EDTA-sensitive cell adhesion sites. The EDTA/EGTA-sensitive cell adhesion sites, also known as contact sites B, are mediated by the Ca2+-dependent cell adhesion molecule gp24/DdCAD-1 (Knecht et al., 1987; Brar and Siu, 1993), while the EDTA-sensitive/EGTA- resistant sites are probably mediated by a Mg2+-dependent cell adhesion molecule (Fontana, 1993). The molecular nature of the latter sites is not yet known. Both types of adhesion sites are responsible for cell–cell interactions in the early stages of development. Coinciding with the aggregation stage is the rapid accumulation of the cell adhesion molecule gp80, which mediates the EDTA-resistant cell adhesion sites or contact sites A (Muller and Gerisch, 1978; Siu et al., 1985; Kamboj et al., 1988, 1989). In postaggregation stages, the EDTA-resistant adhesion sites are mediated by the membrane glycoprotein gp150 (Geltosky et al., 1979; Siu et al., 1983; Gao et al., 1992).DdCAD-1 is expressed by cells soon after the initiation of development (Knecht et al., 1987). Antibodies raised against gel-purified DdCAD-1 specifically inhibit the EDTA/EGTA-sensitive cell–cell adhesion sites and block development (Loomis, 1988). We have purified DdCAD-1 to homogeneity and demonstrated that labeled soluble DdCAD-1 binds to cells in an EDTA/EGTA-sensitive manner (Brar and Siu, 1993). Binding of DdCAD-1 to cells is prevented when cells are precoated with anti– DdCAD-1 antibodies, consistent with a homophilic mode of interaction. In addition, binding of DdCAD-1 to cells inhibits cell reassociation, indicating that it contains only a single cell binding site.Recent cloning of the DdCAD-1 cDNA predicts a protein of 23,924 daltons (Wong et al., 1996). The deduced amino acid sequence of DdCAD-1 shows significant sequence similarities with members of the cadherin family, and it contains a Ca2+-binding motif residing in the carboxy-terminal region. Indeed, Ca2+ overlay experiments have shown that DdCAD-1 is a Ca2+-binding protein with multiple binding sites (Brar and Siu, 1993; Wong et al., 1996). It is therefore conceivable that DdCAD-1 is a primitive member of the cadherin superfamily and it may mediate cell–cell adhesion in a manner similar to that of cadherins (Shapiro et al., 1995; Nagar et al., 1996). Another novel feature of the predicted sequence is that it lacks an amino-terminal hydrophobic signal peptide or a transmembrane domain, suggesting that DdCAD-1 is a soluble protein. Consistent with this observation, both subcellular fractionation and immunofluorescence microscopy have revealed a predominant cytoplasmic localization of DdCAD-1, indicating that 60–80% of DdCAD-1 is soluble (Brar and Siu, 1993; Sesaki and Siu, 1996). However, IgG binding and capping experiments clearly demonstrate that a substantial amount of DdCAD-1 is present on the cell surface (Brar and Siu, 1993; Wong et al., 1996). Interestingly, DdCAD-1 undergoes rapid translocation from the cytoplasm to the plasma membrane in the preaggregation stage of development (Sesaki and Siu, 1996), and then it becomes concentrated on filopodial structures and in cell– cell contact regions. These observations thus raise the question of how DdCAD-1 is transported and anchored to the cell surface.In this report we present morphological and biochemical evidence that DdCAD-1 is transported to the cell surface from the cytosol via contractile vacuoles, which is known so far to function exclusively in osmoregulation in cells. Furthermore, we show that isolated contractile vacuoles selectively take up soluble DdCAD-1 into their lumen in a cell-free system. Our results demonstrate, for the first time, a protein targeting function for contractile vacuoles and a novel nonclassical protein transport mechanism.  相似文献   

2.
Clathrin-coated vesicles play an established role in endocytosis from the plasma membrane, but they are also found on internal organelles. We examined the composition of clathrin-coated vesicles on an internal organelle responsible for osmoregulation, the Dictyostelium discoideum contractile vacuole. Clathrin puncta on contractile vacuoles contained multiple accessory proteins typical of plasma membrane–coated pits, including AP2, AP180, and epsin, but not Hip1r. To examine how these clathrin accessory proteins influenced the contractile vacuole, we generated cell lines that carried single and double gene knockouts in the same genetic background. Single or double mutants that lacked AP180 or AP2 exhibited abnormally large contractile vacuoles. The enlarged contractile vacuoles in AP180-null mutants formed because of excessive homotypic fusion among contractile vacuoles. The SNARE protein Vamp7B was mislocalized and enriched on the contractile vacuoles of AP180-null mutants. In vitro assays revealed that AP180 interacted with the cytoplasmic domain of Vamp7B. We propose that AP180 directs Vamp7B into clathrin-coated vesicles on contractile vacuoles, creating an efficient mechanism for regulating the internal distribution of fusion-competent SNARE proteins and limiting homotypic fusions among contractile vacuoles. Dictyostelium contractile vacuoles offer a valuable system to study clathrin-coated vesicles on internal organelles within eukaryotic cells.  相似文献   

3.
The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd2+ transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1pK669M) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion.  相似文献   

4.
Volume and conformational changes of the contractile tannin vacuoles of the abaxial motor cells of the primary pulvinus of Mimosa pudica L. parallel the seismonastic leaf movement. Since such changes in cells and organelles of animal systems are often regulated by calcium, we studied Ca2+ movement in the motor cells and tissue. By fixation with Lillie's neutral buffered formalin, followed by staining with alizarin red sulfate (ARS), calcium was localized in the tannin vacuoles of the motor cells of the primary pulvinus. After treatment with ethylenediaminetetraacetate, 8-hydroxyquinoline, and several other calcium-complexing or extracting agents, the color reaction due to alizarin red sulfonate was no longer present. By using an analytical method, it was shown that the effluent from stimulated pulvini has significantly more Ca2+ than that from unstimulated controls. Ten millimolar LaCl3 inhibits recovery of the tannin vacuole in vivo in 10 mm CaCl2 or in distilled water. Quantitative data obtained by microspectrophotometry demonstrated calcium migration during the bending movement of the primary pulvinus. In the adaxial motor cells a small amount of calcium migrates from the tannin vacuole, and calcium on the cell wall moves to the central vacuole. In the abaxial half, a large amount of calcium from the tannin vacuole moves to the central vacuole of the motor cell. It is probable that the calcium binds to the microfibrillar contents of the central vacuole. These observations support the contention that Ca2+ migrates between the surface of the tannin vacuole and the inside of the central vacuole. The recovery and maintenance of the tannin vacuole in the spherical form may play a role in maintaining turgor in the motor cells of the abaxial half of the primary pulvinus of Mimosa.  相似文献   

5.
The transport of Ca2+ across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+ stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol‐3‐phosphate (PI3P) by the PI3P‐5‐kinase Fab1 to produce transient PI(3,5)P2 pools. Ca2+ is also released during vacuole fusion upon trans‐SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2 on Ca2+ flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2 were required for Ca2+ uptake into the vacuole, increased concentrations abolished Ca2+ efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2 or increased endogenous production of by the hyperactive fab1T2250A mutant. In contrast, the lack of PI(3,5)P2 on vacuoles from the kinase dead fab1EEE mutant showed delayed and decreased Ca2+ uptake. The effects of PI(3,5)P2 were linked to the Ca2+ pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2. Experiments with Verapamil inhibited Ca2+ uptake when added at the start of the assay, while adding it after Ca2+ had been taken up resulted in the rapid expulsion of Ca2+. Vacuoles lacking both Pmc1 and the H+/Ca2+ exchanger Vcx1 lacked the ability to take up Ca2+ and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2 can modulate which path predominates.  相似文献   

6.

Background

Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined.

Findings

We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1) are highly conserved suggesting essential functional roles.

Conclusions

The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.  相似文献   

7.
The infraciliary lattice (ICL) is the innermost cortical cytoskeletal network of Paramecium. Its meshes which run around the proximal end of basal bodies form a continuous contractile network beneath the cell surface. We had previously shown that the network, which could be recovered in a contracted form and selectively solubilized by EGTA from an ICL-enriched cell fraction, was principally composed of 23–24 kDa polypeptides cross-reacting with antibodies raised against the 22 kDa Ca2+ -binding proteins of the ecto-endoplasmic boundary (EEB), a contractile cytoskeletal network of another ciliate Isotricha prostoma. We show here 1) that the ICL also comprises a 220 kDa polypeptide; 2) that the 23–24 kDa polypeptides are resolved in 2D gels into 11 spots of acidic pI, 7 of which are both Ca2+ -binding and cross-reacting with the anti EEB polypeptides; 3) that the network displays a high Ca2+ -affinity as the treshold for solubilization/co-precipitation of both high and low MW polypeptides is around 10−8 M free Ca2+ ; 4) that in vivo contraction of the network occurs upon physiological increase of internal calcium concentration. The likely phylogenetic relationships of the 23–24 kDa ICL polypeptides with the calmodulin related family of Ca2+ -modulated polypeptides and the functions of the ICL in cell contractility and Ca2+ homeostasis are discussed.  相似文献   

8.
In plants, Ca2+, phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates are major components of intracellular signaling. Several kinds of proteins and enzymes, such as calmodulin (CaM), protein kinase, protein phosphatase, and the Ca2+ channel, mediate the signaling. Two new Ca2+-binding proteins were identified from Arabidopsis thaliana and named PCaP1 and PCaP2 [plasma membrane (PM)-associated Ca2+(cation)-binding protein 1 and 2]. PCaP1 has an intrinsically disordered region in the central and C-terminal parts. The PCaP1 gene is expressed in most tissues and the PCaP2 gene is expressed predominantly in root hairs and pollen tubes. We recently demonstrated that these proteins are N-myristoylated, stably anchored in the PM, and are bound with phosphatidylinositol phosphates, especially PtdInsP2s. Here we propose a model for the switching mechanism of Ca2+-signaling mediated by PtdInsPs. Ca2+ forms a complex with CaM (Ca2+-CaM) when there is an increase in the cytosol free Ca2+. The binding of PCaPs with Ca2+-CaM causes PCaPs to release PtdInsPs. Until the release of PtdInsPs, the signaling is kept in the resting state.Key words: calcium signal, calmodulin, inositol phosphate, intrinsically disordered protein, myristoylation, phosphatidylinositol phosphate, plasma membrane  相似文献   

9.
Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.  相似文献   

10.
The tellurium oxyanion TeO32− has been used in the treatment of infectious diseases caused by mycobacteria. However, many pathogenic bacteria show tellurite resistance. Several tellurite resistance genes have been identified, and these genes mediate responses to diverse extracellular stimuli, but the mechanisms underlying their functions are unknown. To shed light on the function of KP-TerD, a 20.5 -kDa tellurite resistance protein from a plasmid of Klebsiella pneumoniae, we have determined its three-dimensional structure in solution using NMR spectroscopy. KP-TerD contains a β-sandwich formed by two five-stranded β-sheets and six short helices. The structure exhibits two negative clusters in loop regions on the top of the sandwich, suggesting that KP-TerD may bind metal ions. Indeed, thermal denaturation experiments monitored by circular dichroism and NMR studies reveal that KP-TerD binds Ca2+. Inductively coupled plasma-optical emission spectroscopy shows that the binding ratio of KP-TerD to Ca2+ is 1:2. EDTA (ethylenediaminetetraacetic acid) titrations of Ca2+-saturated KP-TerD monitored by one-dimensional NMR yield estimated dissociation constants of 18  and 200 nM for the two Ca2+-binding sites of KP-TerD. NMR structures incorporating two Ca2+ ions define a novel bipartite Ca2+-binding motif that is predicted to be highly conserved in TerD proteins. Moreover, these Ca2+-binding sites are also predicted to be present in two additional tellurite resistance proteins, TerE and TerZ. These results suggest that some form of Ca2+ signaling plays a crucial role in tellurite resistance and in other responses of bacteria to multiple external stimuli that depend on the Ter genes.  相似文献   

11.
Calmodulin (CaM) is one of the major Ca2+-binding proteins in the cells, and it plays multiple roles in several Ca2+ signaling pathways and regulating the activities of other proteins. In the present study, we characterized CaM genes from the marine dinoflagellates Amphidinium carterae, Cochlodinium polykrikoides, Prorocentrum micans, and P. minimum, and examined their expression patterns upon the addition and chelation of calcium. Their cDNAs had same ORF length (450 bp) and encoded the same protein, but with few nucleotide differences in the ORF and different 3′- and 5′ untranslated regions (UTRs). The four CaM proteins consist of four EF-hand Ca2+-binding motifs, two N-terminal domains and two C-terminal domains, and they were highly conserved within eukaryotes. The CaM gene expressions in the tested species increased by calcium treatments; however, they were significantly down-regulated by the calcium-chelator EGTA. The CaM genes of the test species were inducible and regulated by different calcium doses, suggesting their major role in calcium regulation in dinoflagellates.  相似文献   

12.
The effect of channel opening in the tonoplast by d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] has been examined on red beet (Beta vulgaris) vacuoles. Patch-clamp measurements of the vacuolar potential and current were performed on vacuoles isolated in 0.1 micromolar free Ca2+ medium. With vacuoles clamped at +30 millivolts, the Ins(1,4,5)P3 induced changes in current were depending on the Ca2+ buffer strength in the external medium. The spontaneous depolarization of vacuoles in which H+-pumps were activated by 5 millimolar MgATP was increased from +6 to +18 millivolts by 1 micromolar Ins(1,4,5)P3. We have interpreted our data by assuming that even with 2 millimolar EGTA to buffer Ca2+ at 0.1 micromolar in the external medium, Ins(1,4,5)P3 released enough Ca2+ from the vacuole to produce an accumulation of this ion near the tonoplast. Apart from their dependency with free Ca2+ in the cytoplasm, the electrical properties of the tonoplast could be depending on the Ins(1,4,5)P3 and Ca2+ buffer values in the cytoplasm.  相似文献   

13.
Effective control of the Ca2+ homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca2+ concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca2+signaling at subcellular resolution. Members of the superfamily of EF-hand Ca2+-binding proteins are effective to either attenuate intracellular Ca2+ transients as stochiometric buffers or function as Ca2+ sensors whose conformational change upon Ca2+ binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca2+-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca2+-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca2+-binding proteins whose expression precedes that of many other Ca2+-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca2+-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca2+signaling under physiological and disease conditions in the nervous system and beyond.  相似文献   

14.
15.
A procedure for the isolation of highly purified sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been described using sucrose gradient centrifugation in zonal rotors. The yield of our purest fraction was 300 mg of sarcoplasmic reticulum protein using 1 kg muscle. The sarcoplasmic reticulum vesicles were relatively simple in composition. The Ca2+-pump protein accounted for most (approx. two-thirds) of the sarcoplasmic reticulum protein. Two other protein components, a Ca2+-binding protein and a M55 protein (approx. 55 000 daltons) each accounted for about 5–10% of the protein. Enrichment in the level of phosphoenzyme by the Ca2+-pump protein was regarded as an important index of the purification of sarcoplasmic reticulum vesicles. The sarcoplasmic reticulum vesicles were capable of forming 6.4 nmoles of 32P-labelled phosphoenzyme per mg protein and had a high capacity of energized Ca2+ uptake. The Ca2+-dependent formation of phosphoenzyme has been used to estimate the sarcoplasmic reticulum protein content in rabbit skeletal muscle and found to be about 2.5% of the total muscle protein.The Ca2+-pump and Ca2+-binding proteins were isolated with a purity of 90% or more by treating the purified sarcoplasmic reticulum vesicles with bile acids in the presence of salt. The solubilized Ca2+-pump protein reaggregated during dialysis together with phospholipid to form membranous vesicles which were capable of forming approx. 9 nmoles 32P-labelled phosphoenzyme per mg protein. The Ca2+-binding protein was water soluble and contained a high percentage of acidic amino acids (35% of total residues).Ca2+ binding by sarcoplasmic reticulum vesicles and by the Ca2+-pump and Ca2+-binding proteins was studied by equilibrium dialysis. Sarcoplasmic reticulum vesicles and Ca2+-pump protein contained nonspecific high-affinity Ca2+ binding sites with a capacity of 90–100 and 55–70 nmoles Ca2+ per mg protein, respectively. Both of them specifically bound 10–15 nmoles Ca2+ per mg protein. The binding constants for nonspecific and specific Ca2+ binding by both preparations were approx. 1 μM?1. The Ca2+-binding protein nonspecifically bound 900–1000 nmoles Ca2+ per mg protein with a binding constant of about 0.25 μM?1.  相似文献   

16.
17.
Ultracytochemical localization of Ca2+ was investigated using the potassium pyroantimonate precipitation method during the development of phloem ganglion. The result showed that Ca2+ was mainly localized in the cell wall and intercellular spaces in the initiating phase. With the development of the phloem ganglion, the distribution of Ca2+ transferred to the vacuole, and the Ca2+ deposits in the cell wall and intercellular space decreased. At the later stage of the developmental phase, Ca2+ was distributed in the tonoplast and vacuole phagocytosis, and the vacuole became the main calcium storage in this phase. At the early stage of maturation of the phloem ganglion, most of the phloem ganglion cells’ vacuoles cracked, and the cytoplastic Ca2+ content increased in large number. In the mature phloem ganglion, not only were there a few Ca2+ localized in the cytoplast of mature cells, but also in the differentiating cells in the vacuoles. Ca2+ was distributed in the tonoplast and vacuole contents; initiating cells almost had no Ca2+. In general, Ca2+ concentration in mature phloem ganglion cells was at a low level. The results indicated that the changes in Ca2+ distribution evoked the phloem ganglion generation, and Ca2+ regulated the physiological function of the phloem ganglion.  相似文献   

18.
S100A1 is a member of the Ca2+-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca2+ homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys85 S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca2+-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys85 thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca2+ signal transmitter sensitive to NO/redox equilibrium within cells.  相似文献   

19.
Fusion of phospholipid vesicles with planar bilayer membranes occurs provided there is an intermembrane contact, which can be mediated by phospholipid-binding proteins, even in the absence of calcium. The firm attachment phase is then followed by the osmotically-driven fusion. These results show that hydrophobic proteins (not necessarily Ca2+-binding proteins) may enhance fusion by promoting contact of membranes. Such proteins may operate synergistically with Ca2+ to reduce the threshold concentration of Ca2+ needed for fusion of biological membranes. Protein-mediated intermembrane contact resulting in fusion may play a crucial role in the regulation and catalysis of biological fusion events.  相似文献   

20.
 To examine possible calcium (Ca2+)-mediated prefertilization events in male gametes of higher plants, we studied protein phosphorylation and the Ca2+-binding proteins, calmodulin and calreticulin, in sperm cells isolated from maize (Zea mays L.) pollen in the presence and absence of Ca2+. Using immunoblotting, we detected calmodulin and calreticulin and Ca2+-induced variations. Exposure of sperm cells to 1 mM Ca2+ for 1 h increased calmodulin content by 136% compared with the control. Ca2+ had little effect on calreticulin at 1 h, but induced a 34% increase after 3 h. Phosphorylation of proteins was low in 1 h-control and Ca2+-treated cells. However, a 13-fold increase in phosphorylation of a 18-kDa protein was found at 12 h in the presence of Ca2+. Ca2+-induced changes in calmodulin, calreticulin and protein phosphorylation observed in maize sperm cells may reflect prefertilization changes in vivo that facilitate sperm cell fusion with egg and central cells. Received: 26 July 1996 / Revision accepted: 7 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号