首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Regulation of neuronal ion channels via P2Y receptors   总被引:1,自引:0,他引:1  
Within the last 15 years, at least 8 different G protein-coupled P2Y receptors have been characterized. These mediate slow metabotropic effects of nucleotides in neurons as well as non-neural cells, as opposed to the fast ionotropic effects which are mediated by P2X receptors. One class of effector systems regulated by various G protein-coupled receptors are voltage-gated and ligand-gated ion channels. This review summarizes the current knowledge about the modulation of such neuronal ion channels via P2Y receptors. The regulated proteins include voltage-gated Ca2+ and K+ channels, as well as N-methyl-d-aspartate, vanilloid, and P2X receptors, and the regulating entities include most of the known P2Y receptor subtypes. The functional consequences of the modulation of ion channels by nucleotides acting at pre- or postsynaptic P2Y receptors are changes in the strength of synaptic transmission. Accordingly, ATP and related nucleotides may act not only as fast transmitters (via P2X receptors) in the nervous system, but also as neuromodulators (via P2Y receptors). Hence, nucleotides are as universal transmitters as, for instance, acetylcholine, glutamate, or -aminobutyric acid.  相似文献   

2.
P2X receptors are calcium permeable ligand-gated ion channels activated by ATP. Their role as cell surface receptors for extracellular ATP released physiologically by mammalian cells is well established. However, the cellular function of P2X receptor subtypes that populate the membranes of intracellular compartments is not defined. An initial report described how intracellular P2X receptors control the function of the contractile vacuole, an osmoregulatory organelle in Dictyostelium and other protists, and that genetic disruption of P2X receptors severely impaired cell volume control during hypotonic stress. However, later studies refuted a functional role of intracellular P2X receptors in Dictyostelium. Here we provide evidence that the discrepancies reported between the studies are due to the laboratory strain of Dictyostelium employed, which display different phenotypes in response to hypotonic stress and a varied dependency upon P2X receptors for osmoregulation. We use the recent discovery that intracellular P2X receptors are novel calcium release channels to provide some mechanistic insight in an effort to explain why the strain variance may exist.  相似文献   

3.
P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1?/?) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1?/? mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.  相似文献   

4.
Molecular determinants of P2Y2 nucleotide receptor function   总被引:5,自引:0,他引:5  
In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.  相似文献   

5.
Indicative of cell surface P2X ion channel activation, extracellular ATP evokes a rapid and transient calcium influx in the model eukaryote Dictyostelium discoideum. Five P2X-like proteins (dP2XA–E) are present in this organism. However, their roles in purinergic signaling are unclear, because dP2XA proved to have an intracellular localization on the contractile vacuole where it is thought to be required for osmoregulation. To determine functional properties of the remaining four dP2X-like proteins and to assess their cellular roles, we recorded membrane currents from expressed cloned receptors and generated a quintuple knock-out Dictyostelium strain devoid of dP2X receptors. ATP evoked inward currents at dP2XB and dP2XE receptors but not at dP2XC or dP2XD. β,γ-Imido-ATP was more potent than ATP at dP2XB but a weak partial agonist at dP2XE. Currents in dP2XB and dP2XE were strongly inhibited by Na+ but insensitive to copper and the P2 receptor antagonists pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid and suramin. Unusual for P2X channels, dP2XA and dP2XB were also Cl-permeable. The extracellular purinergic response to ATP persisted in p2xA/B/C/D/E quintuple knock-out Dictyostelium demonstrating that dP2X channels are not responsible. dP2XB, -C, -D, and -E were found to be intracellularly localized to the contractile vacuole with the ligand binding domain facing the lumen. However, quintuple p2xA/B/C/D/E null cells were still capable of regulating cell volume in water demonstrating that, contrary to previous findings, dP2X receptors are not required for osmoregulation. Responses to the calmodulin antagonist calmidazolium, however, were reduced in p2xA/B/C/D/E null cells suggesting that dP2X receptors play a role in intracellular calcium signaling.  相似文献   

6.
P2X受体研究进展   总被引:11,自引:2,他引:9  
P2X受体为配体门控离子通道,属于P2受体家族。P2X受体的配体是ATP,胞外ATP结合时P2X受体通道打开,允许阳离子(Na 、Ca2 等)通过。目前已克隆了7个哺乳动物的P2X(P2X1-7)受体,并阐明了它们的药理学特性。天然P2X受体可以组装成同型或异型聚合体,形成功能性离子通道。对有关P2X受体的结构、分布、功能、生物物理学特性等研究的最新进展进行了综述。  相似文献   

7.
After the primary structure of P2X receptors had been identified, their function had to be characterized on the molecular level. Since these ligand-gated ion channels become activated very quickly after binding of ATP, methods with adequate time resolution have to be applied to investigate the early events induced by the agonist. Single-channel recordings were performed to describe conformational changes on P2X2, P2X4, and P2X7 receptors induced by ATP and also by allosteric receptor modifiers. The main results of these studies and the models of P2X receptor kinetics derived from these observations are reviewed here. The investigation of purinoceptors by means of the patch clamp technique following site-directed mutagenesis will probably reveal more details of P2X receptor function at the molecular level.  相似文献   

8.
ATP, signaling through P2 receptors, is one of the most important extracellular regulatory molecules in the skeleton. P2 receptors are divided into two subclasses, P2Y which are G-protein coupled and P2X which are ligand-gated ion channels. There is molecular and functional evidence for widespread expression of both subclasses of receptors by bone cells. Co-activation of P2Y and PTH1 receptors on osteoblasts, leads to synergistic expression of osteoblastic genes, providing a mechanism for integrating local and systemic regulatory signals in bone. Activation of P2Y1 receptors on osteoblasts enhances expression of RANKL leading indirectly to an increase in osteoclast formation and resorption. Expression of P2X7 inducible pores on osteoclast precursor cell membranes allows fusion to form multinucleated osteoclasts and blockade of this receptor inhibits resorption. Bone cells release nucleotides into the extracellular environment to provide highly localized and transient signals that regulate bone formation and bone resorption.  相似文献   

9.
The P2X7 receptor (P2X7R) is an ATP-gated, cation-selective channel permeable to Na+, K+ and Ca2+. This channel has also been associated with the opening of a non-selective pore that allows the flow of large organic ions. However, the biophysical properties of the P2X7R have yet to be characterized unequivocally. We investigated a region named ADSEG, which is conserved among all subtypes of P2X receptors (P2XRs). It is located in the M2 domain of hP2X7R, which aligns with the H5 signature sequence of potassium channels. We investigated the channel forming ability of ADSEG in artificial planar lipid bilayers and in biological membranes using the cell-attached patch-clamp techniques. ADSEG forms channels, which exhibit a preference for cations. They are voltage independent and show long-term stability in planar lipid bilayers as well as under patch-clamping conditions. The open probability of the ADSEG was similar to that of native P2X7R. The conserved part of the M2 domain of P2X7R forms ionic channels in planar lipid bilayers and in biological membranes. Its electrophysiological characteristics are similar to those of the whole receptor. Conserved and hydrophobic part of the M2 domain forms ion channels.  相似文献   

10.

Background  

Acetylcholine receptor type ligand-gated ion channels (ART-LGIC; also known as Cys-loop receptors) are a superfamily of proteins that include the receptors for major neurotransmitters such as acetylcholine, serotonin, glycine, GABA, glutamate and histamine, and for Zn2+ ions. They play a central role in fast synaptic signaling in animal nervous systems and so far have not been found outside of the Metazoa.  相似文献   

11.
Chen XQ  Wang B  Wu C  Pan J  Yuan B  Su YY  Jiang XY  Zhang X  Bao L 《Cell research》2012,22(4):677-696
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.  相似文献   

12.
Adenosine triphosphate (ATP) and other nucleotides can be released in the central and peripheral nervous systems and act as neurotransmitters/neuromodulators. They can activate G-protein coupled receptors and ligand-gated ion channels, which are present throughout the central nervous system (CNS). P2X2 is one of seven known ion channels gated by ATP, and is characterized by having two transmembrane domains, a large extracellular loop and intracellular N- and C-termini. Recently, work from several laboratories has shown that neurotransmitter receptors can interact with other proteins thereby changing their functional attributes. More specifically, it was demonstrated that P2X2 binds beta-tubulin. Our goal was to investigate this interaction, by comparing P2X2 with a naturally occurring splicing variant named P2X2b. These isoforms differ in their C-terminal regions which contain the proposed beta-tubulin-binding domain. Indeed we were able to demonstrate that only the long variant P2X2 binds beta-tubulin I in various biochemical assays. In addition, this interaction can be direct since it also occurred when the P2X2 C-terminus was exposed to purified brain tubulin. When expressed in heterologous cells, P2X2 interacted with beta-tubulin I while present on the outer membrane, as demonstrated by biotinylation of surface proteins. Therefore, the present data strongly support a functional interaction between an ATP-gated channel and the cytoskeleton. Moreover, we show a biochemical difference between the splicing alternatives that might account for novel distinct functional roles.  相似文献   

13.
Hearing relies on a sensitive mechanoelectrical transduction process in the cochlea of the inner ear. The cochlea contains sensory, secretory, neural, supporting and epithelial cells which are all essential to the sound transduction process. It is well known that a complex extracellular purinergic signaling system contributes to cochlear homeostasis, altering cochlear sensitivity and neural output via ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors. This review focuses on the emerging roles of ATP that are currently under investigation in the developing sensory epithelium, with particular emphasis on the link between ATP release, Ca2+ signaling, the expression and function of gap junction proteins connexin26 and connexin30, and the acquisition of hearing.  相似文献   

14.
P2X receptors are a distinct family of ligand-gated ion channels activated by extracellular ATP. Each of the seven identified subunit proteins (P2X1 through P2X7) has been reported to form functional homo-oligomeric channels when expressed in heterologous systems. Functional studies of native receptors, together with patterns of subunit gene expression, suggest that hetero-oligomeric assembly among members of this family may also occur. This prediction is supported by reports describing hetero-oligomeric assembly for three different recombinant subunit combinations. In this report, we systematically examined the ability of all members of the P2X receptor family to interact using a co-immunoprecipitation assay. The seven P2X receptor subunits were differentially epitope-tagged and expressed in various combinations in human embryonic kidney 293 cells. It was found that six of the seven subunits formed homo-oligomeric complexes, the exception being P2X6. When co-assembly between pairs of subunits was examined, all were able to form hetero-oligomeric assemblies with the exception of P2X7. Whereas P2X1, P2X2, P2X5, and P2X6 were able to assemble with most subunits, P2X3 and P2X4 presented a more restricted pattern of co-association. These results suggest that hetero-oligomeric assembly might underlie functional discrepancies observed between P2X responses seen in the native and recombinant settings, while providing for an increased diversity of signaling by ATP.  相似文献   

15.
Salivary glands express multiple isoforms of P2X and P2Y nucleotide receptors, but their in vivo physiological roles are unclear. P2 receptor agonists induced salivation in an ex vivo submandibular gland preparation. The nucleotide selectivity sequence of the secretion response was BzATP ≫ ATP > ADP ≫ UTP, and removal of external Ca2+ dramatically suppressed the initial ATP-induced fluid secretion (∼85%). Together, these results suggested that P2X receptors are the major purinergic receptor subfamily involved in the fluid secretion process. Mice with targeted disruption of the P2X7 gene were used to evaluate the role of the P2X7 receptor in nucleotide-evoked fluid secretion. P2X7 receptor protein and BzATP-activated inward cation currents were absent, and importantly, purinergic receptor agonist-stimulated salivation was suppressed by more than 70% in submandibular glands from P2X7-null mice. Consistent with these observations, the ATP-induced increases in [Ca2+]i were nearly abolished in P2X7–/– submandibular acinar and duct cells. ATP appeared to also act through the P2X7 receptor to inhibit muscarinic-induced fluid secretion. These results demonstrate that the ATP-sensitive P2X7 receptor regulates fluid secretion in the mouse submandibular gland.Salivation is a Ca2+-dependent process (1, 2) primarily associated with the neurotransmitters norepinephrine and acetylcholine, release of which stimulates α-adrenergic and muscarinic receptors, respectively. Both types of receptors are coupled to G proteins that activate phospholipase Cβ (PLCβ) during salivary gland stimulation. PLCβ activation cleaves phosphatidylinositol 1,4-bisphosphate resulting in diacylglycerol and inositol 1,4,5-trisphosphate (InsP3) production. Activation of Ca2+-selective InsP3 receptor channels localized to the endoplasmic reticulum of salivary acinar cells increases the intracellular free calcium concentration ([Ca2+]i).4 Depletion of the endoplasmic reticulum Ca2+ pool triggers extracellular Ca2+ influx and a sustained elevation in [Ca2+]i. This increase in [Ca2+]i activates Ca2+-dependent K+ and Cl channels promoting Cl secretion across the apical membrane and a lumen negative, electrochemical gradient that supports Na+ efflux into the lumen. The accumulation of NaCl creates an osmotic gradient which drives water movement into the lumen, thus generating isotonic primary saliva. This primary fluid is then modified by the ductal system, which reabsorbs NaCl and secretes KHCO3 producing a final saliva that is hypotonic (1, 2).Salivation also has a non-cholinergic, non-adrenergic component, the origin of which is unclear (3). In addition to muscarinic and α-adrenergic receptors, salivary acinar cells express other receptors that are coupled to an increase in [Ca2+]i such as purinergic P2 and substance P receptors. Like muscarinic and α-adrenergic receptors, P2 receptor activation leads to a sustained increase in [Ca2+]i in salivary acinar cells (4). In contrast, substance P receptor activation rapidly desensitizes and therefore generates only a relatively transient increase in [Ca2+]i (5) that is unlikely to appreciably contribute to fluid secretion. The purinergic P2 receptor family is comprised of G protein-coupled P2Y and ionotropic P2X receptors activated by extracellular di- and triphosphate nucleotides. Activation of both subfamilies of P2 receptors causes an increase in [Ca2+]i. P2Y receptors increase [Ca2+]i via InsP3-induced Ca2+ mobilization from intracellular stores (similar to α-adrenergic and muscarinic receptors) while P2X receptors act as ligand-gated, non-selective cation channels that mediate extracellular Ca2+ influx (6). Salivary gland tissues express at least four isoforms of P2X (P2X4 and P2X7) and P2Y (P2Y1 and P2Y2) subtypes; however, their in vivo physiological significance has yet to be characterized (711).Our results revealed that ATP acts in isolation to stimulate fluid secretion from the mouse submandibular gland, but secretion is inhibited when ATP is simultaneously presented with a muscarinic receptor agonist. Ablation of the P2X7 gene had no effect on the salivary flow rate evoked by muscarinic receptor activation, but markedly reduced ATP-mediated fluid secretion and rescued the inhibitory effects of ATP on muscarinic receptor activation. Submandibular gland acinar cells from P2X7–/– animals had dramatically impaired ATP-activated Ca2+ signaling, consistent with this being the mechanism responsible for the reduction in ATP-mediated fluid secretion in these mice. Together, these results demonstrated that ATP regulates salivation, acting mainly through the P2X7 receptor. Activation of the P2X7 receptor may play a major role in non-adrenergic, non-cholinergic stimulated fluid secretion.  相似文献   

16.
The P2 purinergic receptor family implicated in many physiological processes, including neurotransmission, mechanical adaptation and inflammation, consists of ATP-gated non-specific cation channels P2XRs and G-protein coupled receptors P2YRs. Different cells, including bone forming osteoblasts, express multiple P2 receptors; however, how P2X and P2Y receptors interact in generating cellular responses to various doses of [ATP] remains poorly understood. Using primary bone marrow and compact bone derived osteoblasts and BMP2-expressing C2C12 osteoblastic cells, we demonstrated conserved features in the P2-mediated Ca2+ responses to ATP, including a transition of Ca2+ response signatures from transient at low [ATP] to oscillatory at moderate [ATP], and back to transient at high [ATP], and a non-monotonic changes in the response magnitudes which exhibited two troughs at 10−4 and 10−2 M [ATP]. We identified P2Y2 and P2X7 receptors as predominantly contributing to these responses and constructed a mathematical model of P2Y2R-induced inositol trisphosphate (IP3) mediated Ca2+ release coupled to a Markov model of P2X7R dynamics to study this system. Model predictions were validated using parental and CRISPR/Cas9-generated P2Y2 and P2Y7 knockouts in osteoblastic C2C12-BMP cells. Activation of P2Y2 by progressively increasing [ATP] induced a transition from transient to oscillatory to transient Ca2+ responses due to the biphasic nature of IP3Rs and the interaction of SERCA pumps with IP3Rs. At high [ATP], activation of P2X7R modulated the response magnitudes through an interplay between the biphasic nature of IP3Rs and the desensitization kinetics of P2X7Rs. Moreover, we found that P2Y2 activity may alter the kinetics of P2X7 towards favouring naïve state activation. Finally, we demonstrated the functional consequences of lacking P2Y2 or P2X7 in osteoblast mechanotransduction. This study thus provides important insights into the biophysical mechanisms underlying ATP-dependent Ca2+ response signatures, which are important in mediating bone mechanoadaptation.  相似文献   

17.
Of the three major classes of ligand-gated ion channels, nicotinic receptors and ionotropic glutamate receptors are known to be organized as pentamers and tetramers, respectively. The architecture of the third class, P2X receptors, is under debate, although evidence for a trimeric assembly is accumulating. Here we provide biochemical evidence that in addition to the rapidly desensitising P2X1 and P2X3 receptors, the slowly desensitising subtypes P2X2, P2X4, and P2X5 are trimers of identical subunits. Similar (heteromeric) P2X subunits also formed trimers, as shown for co-expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor that was exported to the plasma membrane. In contrast, P2X6 subunits, which are incapable of forming functional homomeric channels in Xenopus oocytes, were retained in the ER as apparent tetramers and high molecular mass aggregates. Altogether, we conclude from these data that a trimeric architecture is the structural hallmark of functional homomeric and heteromeric P2X receptors.  相似文献   

18.

Background

The activation of various P2 receptors (P2R) by extracellular nucleotides promotes diverse cellular events, including the stimulation of cell signaling protein and increases in [Ca2+]i. We report that some agents that can block P2X7R receptors also promote diverse P2X7R-independent effects on cell signaling.

Methods

We exposed native rat parotid acinar cells, salivary gland cell lines (Par-C10, HSY, HSG), and PC12 cells to suramin, DIDS (4,4′-diisothiocyano stilbene-2,2′-disulfonic acid), Cibacron Blue 3GA, Brilliant Blue G, and the P2X7R-selective antagonist A438079, and examined the activation/phosphorylation of ERK1/2, PKCδ, Src, CDCP1, and other signaling proteins.

Results

With the exception of suramin, these agents blocked the phosphorylation of ERK1/2 by BzATP in rat parotid acinar cells; but higher concentrations of suramin blocked ATP-stimulated 45Ca2+ entry. Aside from A438079, these agents increased the phosphorylation of ERK1/2, Src, PKCδ, and other proteins (including Dok-1) within minutes in an agent- and cell type-specific manner in the absence of a P2X7R ligand. The stimulatory effect of these compounds on the tyrosine phosphorylation of CDCP1 and its Src-dependent association with PKCδ was blocked by knockdown of CDCP1, which also blocked Src and PKCδ phosphorylation.

Conclusions

Several agents used as P2X7R blockers promote the activation of various signaling proteins and thereby act more like receptor agonists than antagonists.

General significance

Some compounds used to block P2 receptors have complicated effects that may confound their use in blocking receptor activation and other biological processes for which they are employed, including their use as blockers of various ion transport proteins.  相似文献   

19.
The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.  相似文献   

20.
P2X receptors are ligand-gated cation channels that transition from closed to open states upon binding ATP. The crystal structure of the closed zebrafish P2X4.1 receptor directly reveals that the ion-conducting pathway is formed by three transmembrane domain 2 (TM2) α-helices, each being provided by the three subunits of the trimer. However, the transitions in TM2 that accompany channel opening are incompletely understood and remain unresolved. In this study, we quantified gated access to Cd2+ at substituted cysteines in TM2 of P2X2 receptors in the open and closed states. Our data for the closed state are consistent with the zebrafish P2X4.1 structure, with isoleucines and threonines (Ile-332 and Thr-336) positioned one helical turn apart lining the channel wall on approach to the gate. Our data for the open state reveal gated access to deeper parts of the pore (Thr-339, Val-343, Asp-349, and Leu-353), suggesting the closed channel gate is between Thr-336 and Thr-339. We also found unexpected interactions between native Cys-348 and D349C that result in tight Cd2+ binding deep within the intracellular vestibule in the open state. Interpreted with a P2X2 receptor structural model of the closed state, our data suggest that the channel gate opens near Thr-336/Thr-339 and is accompanied by movement of the pore-lining regions, which narrow toward the cytosolic end of TM2 in the open state. Such transitions would relieve the barrier to ion flow and render the intracellular vestibule less splayed during channel opening in the presence of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号