首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APCCdc20). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25+) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2ACdc55 triggers anaphase onset.  相似文献   

2.
Activation of the anaphase-promoting complex (APC) is required for anaphase initiation and for exit from mitosis in mammalian cells. Cdc20, which specifically recognizes APC substrates involved in the metaphase-to-anaphase transition, plays a pivotal role in APC activation through direct interaction with the APC. The activation of the APC by Cdc20 is prevented by the interaction of Cdc20 with Mad2 when the spindle checkpoint is activated. Using deletion mutagenesis and peptide mapping, we have identified the sequences in Cdc20 that target it to Mad2 and the APC, respectively. These sequences are distinct but overlapping, providing a possible structural explanation for the internal modulation of the APC-Cdc20 complex by Mad2. In the course of these studies, a truncation mutant of Cdc20 (1-153) that constitutively binds Mad2 but fails to bind the APC was identified. Overexpression of this mutant induces the formation of multinucleated cells and increases their susceptibility to undergoing apoptosis when treated with microtubule-inhibiting drugs. Our experiments demonstrate that disruption of the Mad2-Cdc20 interaction perturbs the mitotic checkpoint, leading to premature activation of the APC, sensitizing the cells to the cytotoxic effects of microtubule-inhibiting drugs.  相似文献   

3.
An essential aspect of progression through mitosis is the sequential degradation of key mitotic regulators in a process that is mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase [1]. In mitotic cells, two forms of the APC/C exist, APC/C(Cdc20) and APC/C(Cdh1), which differ in their associated WD-repeat proteins (Cdc20 and Cdh1, respectively), time of activation, and substrate specificity [2, 3]. How the WD-repeat proteins contribute to APC/C's activation and substrate specificity is not clear. Many APC/C substrates contain a destruction box element that is necessary for their ubiquitination [4-6]. One such APC/C substrate, the budding yeast anaphase inhibitor Pds1 (securin), is degraded prior to anaphase initiation in a destruction box and APC/C(Cdc20)-dependent manner [3, 7]. Here we find that Pds1 interacts directly with Cdc20 and that this interaction requires Pds1's destruction box. Our results suggest that Cdc20 provides a link between the substrate and the core APC/C and that the destruction box is essential for efficient Cdc20-substrate interaction. We also find that Pds1 does not interact with Cdh1. Finally, the effect of spindle assembly checkpoint activation, known to inhibit APC/C function [8], on the Pds1-Cdc20 interaction is examined.  相似文献   

4.
The WD repeat protein Cdc20 is essential for progression through mitosis because it is required to activate ubiquitin ligation by the anaphase-promoting complex (APC/C). Here we show in yeast that Cdc20 binds to the CCT chaperonin, which is known as a folding machine for actin and tubulin. The CCT is required for Cdc20's ability to bind and activate the APC/C. In vivo, CCT is essential for Cdc20-dependent cell cycle events such as sister chromatid separation and exit from mitosis. The chaperonin is also required for the function of the Cdc20-related protein Cdh1, which activates the APC/C during G1. We propose that folding of the Cdc20 family of APC/C activators is an essential and evolutionary conserved function of the CCT chaperonin.  相似文献   

5.
APC/C-Cdh1     
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of cell cycle. The activation of APC/C is depended on two WD-40 domain proteins, Cdc20 and Cdh1. While APC/Cdc20 principally regulates mitotic progression, APC/Cdh1 shows a broad spectrum of substrates in and beyond cell cycle. In past several years, numerous biochemical and mouse genetic studies have greatly attracted our attention to the emerging role of APC/Cdh1 in genomic integrity, cellular differentiation and human diseases. This review will aim to summarize the recent expended understanding of APC/Cdh1 in regulating biological function and how its dysfunction may lead to diseases.  相似文献   

6.
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of the cell cycle. The activation of APC/C is dependent on two WD-40 domain proteins, Cdc20 and Cdh1. While APC/Cdc20 principally regulates mitotic progression, APC/Cdh1 shows a broad spectrum of substrates in and beyond cell cycle. In the past several years, numerous biochemical and mouse genetic studies have greatly attracted our attention to the emerging role of APC/Cdh1 in genomic integrity, cellular differentiation and human diseases. This review will aim to summarize the recently expanded understanding of APC/Cdh1 in regulating biological function and how its dysfunction may lead to diseases.Key words: APC/C, Cdh1, proteolysis, genomic integrity, signal transduction, differentiation, tumorigenesis  相似文献   

7.
Reimann JD  Freed E  Hsu JY  Kramer ER  Peters JM  Jackson PK 《Cell》2001,105(5):645-655
We have discovered an early mitotic inhibitor, Emi1, which regulates mitosis by inhibiting the anaphase promoting complex/cyclosome (APC). Emi1 is a conserved F box protein containing a zinc binding region essential for APC inhibition. Emi1 accumulates before mitosis and is ubiquitylated and destroyed in mitosis, independent of the APC. Emi1 immunodepletion from cycling Xenopus extracts strongly delays cyclin B accumulation and mitotic entry, whereas nondestructible Emi1 stabilizes APC substrates and causes a mitotic block. Emi1 binds the APC activator Cdc20, and Cdc20 can rescue an Emi1-induced block to cyclin B destruction. Our results suggest that Emi1 regulates progression through early mitosis by preventing premature APC activation, and may help explain the well-known delay between cyclin B/Cdc2 activation and cyclin B destruction.  相似文献   

8.
McDonald CM  Cooper KF  Winter E 《Genetics》2005,171(3):901-911
Smk1 is a meiosis-specific MAPK homolog in Saccharomyces cerevisiae that regulates the postmeiotic program of spore formation. Similar to other MAPKs, it is activated via phosphorylation of the T-X-Y motif in its regulatory loop, but the signals controlling Smk1 activation have not been defined. Here we show that Ama1, a meiosis-specific activator of the anaphase-promoting complex/cyclosome (APC/C), promotes Smk1 activation during meiosis. A weakened allele of CDC28 suppresses the sporulation defect of an ama1 null strain and increases the activation state of Smk1. The function of Ama1 in regulating Smk1 is independent of the FEAR network, which promotes exit from mitosis and exit from meiosis I through the Cdc14 phosphatase. The data indicate that Cdc28 and Ama1 function in a pathway to trigger Smk1-dependent steps in spore morphogenesis. We propose that this novel mechanism for controlling MAPK activation plays a role in coupling the completion of meiosis II to gamete formation.  相似文献   

9.
The molecular events triggered during progesterone-induced oocyte maturation in Xenopus are not well understood. One of the first events is the activation of the MAPK cascade and the maturation-promoting factor (MPF). The latter triggers meiosis I resumption and meiosis II progression until the metaphase II arrest. The release of the metaphase II is mediated by the anaphase-promoting complex (APC)-dependent degradation of cyclin B. This degradation activity requires the APC activator Cdc20 that activates ubiquitination reactions by recruiting substrates to the APC. However, recent reports in different organisms involve other APC regulators during different phases of the meiotic cycle. Therefore, we investigated the role of another APC regulator, XCdh1 during the G2/M transition in meiosis I in the Xenopus oocyte. Here, we report that XCdh1 protein is expressed in oocytes. Besides, injection of specific XCdh1 antisense inhibits progesterone-induced G2/M transition that can be rescued by adding back the purified human Cdh1 protein. On the other hand, ectopic expression of low levels of XCdh1 protein has a positive effect on the G2/M transition by facilitating this process. Moreover, the sole injection of XCdh1 mRNA triggers Mos protein synthesis and biphosphorylation of MAPK in absence of progesterone. Altogether, these data show that XCdh1 has a positive role during the G2/M transition in the oocyte. According to our results, its role could be independent of the APC.  相似文献   

10.
Tarailo M  Kitagawa R  Rose AM 《Genetics》2007,175(4):1665-1679
The spindle assembly checkpoint (SAC) governs the timing of metaphase-to-anaphase transition and is essential for genome stability. The Caenorhabditis elegans mutant strain gk2 carries a deletion within the mdf-1/MAD1 gene that results in death of the homozygous strain after two or three generations. Here we describe 11 suppressors of the mdf-1(gk2) lethality, 10 identified in an ethyl methanesulfonate (EMS) mutagenesis screen and 1 isolated using the dog-1(gk10) (deletions of guanine-rich DNA) mutator strain. Using time-lapse imaging of early embryonic cells and germline mitotic division, we demonstrate that there are two classes of suppressors. Eight suppressors compensate for the loss of the checkpoint by delaying mitotic progression, which coincides with securin (IFY-1/Pds1) accumulation; three suppressors have normal IFY-1/Pds1 levels and normal anaphase onset. Furthermore, in the class of suppressors with delayed mitotic progression, we have identified four alleles of known suppressors emb-30/APC4 and fzy-1/CDC20, which are components of the anaphase-promoting complex/cyclosome (APC/C). In addition, we have identified another APC/C component capable of bypassing the checkpoint requirement that has not previously been described in C. elegans. The such-1/APC5-like mutation, h1960, significantly delays anaphase onset both in germline and in early embryonic cells.  相似文献   

11.
During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumulates in G2 and is degraded again in prometaphase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identified a D box motif in p21 necessary for APC/C(Cdc20)-mediated ubiquitylation of p21. Overexpression of Cdc20 or Skp2 destabilized wild-type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21(+/+) prometaphase cells, but not in p21(-/-) cells. Thus, in prometaphase Cdc20 positively regulates Cdk1 by mediating the degradation of p21. We propose that the APC/C(Cdc20)-mediated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation.  相似文献   

12.
The p27(Kip1) ubiquitin ligase receptor Skp2 is often overexpressed in human tumours and displays oncogenic properties. The activity of SCF(Skp2) is regulated by the APC(Cdh1), which targets Skp2 for degradation. Here we show that Skp2 phosphorylation on Ser64/Ser72 positively regulates its function in vivo. Phosphorylation of Ser64, and to a lesser extent Ser72, stabilizes Skp2 by interfering with its association with Cdh1, without affecting intrinsic ligase activity. Cyclin-dependent kinase (CDK)2-mediated phosphorylation of Skp2 on Ser64 allows its expression in mid-G1 phase, even in the presence of active APC(Cdh1). Reciprocally, dephosphorylation of Skp2 by the mitotic phosphatase Cdc14B at the M --> G1 transition promotes its degradation by APC(Cdh1). Importantly, lowering the levels of Cdc14B accelerates cell cycle progression from mitosis to S phase in an Skp2-dependent manner, demonstrating epistatic relationship of Cdc14B and Skp2 in the regulation of G1 length. Thus, our results reveal that reversible phosphorylation plays a key role in the timing of Skp2 expression in the cell cycle.  相似文献   

13.
Meiosis is a specialized form of cell division generating haploid gametes and is dependent upon protein ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C). Accurate control of the APC/C during meiosis is important in all eukaryotic cells and is in part regulated by the association of coactivators and inhibitors. We previously showed that the fission yeast meiosis-specific protein Mes1 binds to a coactivator and inhibits APC/C; however, regulation of the Mes1-mediated APC/C inhibition remains elusive. Here we show how Mes1 distinctively regulates different forms of the APC/C. We study all the coactivators present in the yeast genome and find that only Slp1/Cdc20 is essential for meiosis I progression. However, Fzr1/Mfr1 is a critical target for Mes1 inhibition because fzr1Δ completely rescues the defect on the meiosis II entry in mes1Δ cells. Furthermore, cell-free studies suggest that Mes1 behaves as a pseudosubstrate for Fzr1/Mfr1 but works as a competitive substrate for Slp1. Intriguingly, mutations in the D-box or KEN-box of Mes1 increase its recognition as a substrate by Fzr1, but not by Slp1. Thus Mes1 interacts with two coactivators in a different way to control the activity of the APC/C required for the meiosis I/meiosis II transition.  相似文献   

14.
Ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid segregation and anaphase. The anaphase-promoting complex/cyclosome and its coactivator CDC20 (APC/CCDC20) form the main ubiquitin E3 ligase for these two proteins. APC/CCDC20 is regulated by CDK1-cyclin B and counteracting PP1 and PP2A family phosphatases through modulation of both activating and inhibitory phosphorylation. Here, we report that PP1 promotes cyclin B destruction at the onset of anaphase by removing specific inhibitory phosphorylation in the N-terminus of CDC20. Depletion or chemical inhibition of PP1 stabilizes cyclin B and results in a pronounced delay at the metaphase-to-anaphase transition after chromosome alignment. This requirement for PP1 is lost in cells expressing CDK1 phosphorylation–defective CDC206A mutants. These CDC206A cells show a normal spindle checkpoint response and rapidly destroy cyclin B once all chromosomes have aligned and enter into anaphase in the absence of PP1 activity. PP1 therefore facilitates the metaphase-to-anaphase transition by promoting APC/CCDC20-dependent destruction of cyclin B in human cells.  相似文献   

15.
Cdc20, an activator of the anaphase-promoting complex (APC), is also required for the exit from mitosis in Saccharomyces cerevisiae. Here we show that during mitosis, both the inactivation of Cdc28-Clb2 kinase and the degradation of mitotic cyclin Clb2 occur in two steps. The first phase of Clb2 proteolysis, which commences at the metaphase-to-anaphase transition when Clb2 abundance is high, is dependent on Cdc20. The second wave of Clb2 destruction in telophase requires activation of the Cdc20 homolog, Hct1/Cdh1. The first phase of Clb2 destruction, which lowers the Cdc28-Clb2 kinase activity, is a prerequisite for the second. Thus, Clb2 proteolysis is not solely mediated by Hct1 as generally believed; instead, it requires a sequential action of both Cdc20 and Hct1.  相似文献   

16.
The spindle checkpoint ensures accurate chromosome segregation by sending a signal from an unattached kinetochore to inhibit anaphase onset. Numerous studies have described the role of Bub3 in checkpoint activation, but less is known about its functions apart from the spindle checkpoint. In this paper, we demonstrate that Bub3 has an unexpected role promoting metaphase progression in budding yeast. Loss of Bub3 resulted in a metaphase delay that was not a consequence of aneuploidy or the activation of a checkpoint. Instead, bub3Δ cells had impaired binding of the anaphase-promoting complex/cyclosome (APC/C) with its activator Cdc20, and the delay could be rescued by Cdc20 overexpression. Kinetochore localization of Bub3 was required for normal mitotic progression, and Bub3 and Cdc20 colocalized at the kinetochore. Although Bub1 binds Bub3 at the kinetochore, bub1Δ cells did not have compromised APC/C and Cdc20 binding. The results demonstrate that Bub3 has a previously unknown function at the kinetochore in activating APC/C-Cdc20 for normal mitotic progression.  相似文献   

17.
The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co‐activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind stably to the APC/C. Whether MCC formation per se is sufficient for a functional SAC or MCC association with the APC/C is required remains unclear. Here, we analyze the role of two conserved motifs in Cdc20, IR and C‐Box, in binding of the MCC to the APC/C. Mutants in both motifs assemble the MCC normally, but IR motif integrity is particularly important for stable binding to the APC/C. Cells expressing Cdc20 with a mutated IR motif have a compromised SAC, as uninhibited Cdc20 can compete with the MCC for APC/C binding and activate it. We thus show that stable MCC association with the APC/C is critical for a functional SAC.  相似文献   

18.
The metaphase-to-anaphase transition is triggered by the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that targets proteins for degradation, leading to sister chromatid separation and mitotic exit. The function of APC is controlled by the spindle checkpoint that delays anaphase onset in the presence of any chromosome that has not established bipolar attachment to the mitotic spindle. In this way, the checkpoint ensures accurate chromosome segregation. The spindle checkpoint is mostly activated from kinetochores that are not attached to microtubules or not under tension that is normally generated from bipolar attachment. These kinetochores recruit several spindle checkpoint proteins to assemble an inhibitory complex composed of checkpoint proteins Mad2, Bub3, and Mad3/BubR1. This complex binds and inhibits Cdc20, an activator and substrate adaptor for APC. In addition, the checkpoint complex promotes Cdc20 degradation, thus lowering Cdc20 protein level upon checkpoint activation. This dual inhibition on Cdc20 likely ensures that the spindle checkpoint is sustained even when the cell contains only a single unattached kinetochore.  相似文献   

19.
The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/CCDC20 ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/CCDH1 has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/CCDC20, releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/CCDH1 substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/CCDC20 and APC/CCDH1 during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity.  相似文献   

20.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase mediating targeted proteolysis through ubiquitination of protein substrates to control the progression of mitosis. The APC/C recognizes its substrates through two adapter proteins, Cdc20 and Cdh1, which contain similar C-terminal domains composed of seven WD-40 repeats believed to be involved in interacting with their substrates. During the transition from metaphase to anaphase, APC/C-Cdc20 mediates the ubiquitination of securin and cyclin B1, allowing the activation of separase and the onset of anaphase and mitotic exit. APC/C-Cdc20 and APC/C-Cdh1 have overlapping substrates. It is unclear whether they are redundant for mitosis. Using a gene-trapping approach, we have obtained mice which lack Cdc20 function. These mice show failed embryogenesis. The embryos were arrested in metaphase at the two-cell stage with high levels of cyclin B1, indicating an essential role of Cdc20 in mitosis that is not redundant with that of Cdh1. Interestingly, Cdc20 and securin double mutant embryos could not maintain the metaphase arrest, suggesting a role of securin in preventing mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号