首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS.  相似文献   

2.
Secretins are channels that allow translocation of macromolecules across the outer membranes of Gram-negative bacteria. Virulence, natural competence, and motility are among the functions mediated by these large oligomeric protein assemblies. Filamentous phage also uses secretins to exit their bacterial host without causing cell lysis. However, the secretin is only a part of a larger membrane-spanning complex, and additional proteins are often required for its formation. A class of outer membrane lipoproteins called pilotins has been implicated in secretin assembly and/or localization. Additional accessory proteins may also be involved in secretin stability. Significant progress has recently been made toward deciphering the complex interactions required for functional secretin assembly. To allow for easier comparison between different systems, we have classified the secretins into five different classes based on their requirements for proteins involved in their assembly, localization, and stability. An overview of pilotin and accessory protein structures, functions, and characterized modes of interaction with the secretin is presented.  相似文献   

3.
Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four α-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four α-helix bundles. The architecture can be described as the insertion of one α-helical hairpin into a second open α-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo.  相似文献   

4.
Secretins, a superfamily of multimeric outer membrane proteins, mediate the transport of large macromolecules across the outer membrane of Gram-negative bacteria. Limited proteolysis of secretin PulD from the Klebsiella oxytoca pullulanase secretion pathway showed that it consists of an N-terminal domain and a protease-resistant C-terminal domain that remains multimeric after proteolysis. The stable C-terminal domain starts just before the region in PulD that is highly conserved in the secretin superfamily and apparently lacks the region at the C-terminal end to which the secretin-specific pilot protein PulS binds. Electron microscopy showed that the stable fragment produced by proteolysis is composed of two stacked rings that encircle a central channel and that it lacks the peripheral radial spokes that are seen in the native complex. Moreover, the electron microscopic images suggest that the N-terminal domain folds back into the large cavity of the channel that is formed by the C-terminal domain of the native complex, thereby occluding the channel, consistent with previous electrophysiological studies showing that the channel is normally closed.  相似文献   

5.
Type IV pili (T4P) are ubiquitous bacterial cell surface structures that undergo cycles of extension, adhesion, and retraction. T4P function depends on a highly conserved envelope-spanning macromolecular machinery consisting of 10 proteins that localizes polarly in Myxococcus xanthus. Using this localization, we investigated the entire T4P machinery assembly pathway by systematically profiling the stability of all and the localization of eight of these proteins in the absence of other T4P machinery proteins as well as by mapping direct protein-protein interactions. Our experiments uncovered a sequential, outside-in pathway starting with the outer membrane (OM) PilQ secretin ring. PilQ recruits a subcomplex consisting of the inner membrane (IM) lipoprotein PilP and the integral IM proteins PilN and PilO by direct interaction with the periplasmic domain of PilP. The PilP/PilN/PilO subcomplex recruits the cytoplasmic PilM protein, by direct interaction between PilN and PilM, and the integral IM protein PilC. The PilB/PilT ATPases that power extension/retraction localize independently of other T4P machinery proteins. Thus, assembly of the T4P machinery initiates with formation of the OM secretin ring and continues inwards over the periplasm and IM to the cytoplasm.  相似文献   

6.
Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-Å structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.  相似文献   

7.
Proteins called secretins form large multimeric complexes that are essential for macromolecular transit across the outer membrane of Gram-negative bacteria. Evidence suggests that the channels formed by some secretin complexes are not tightly closed, but their permeability properties have not been well characterized. Here, we used cell-free synthesis coupled with spontaneous insertion into liposomes to investigate the permeability of the secretin PulD. Leakage assays using preloaded liposomes indicated that PulD allows the efflux of small fluorescent molecules with a permeation cutoff similar to that of general porins. Other secretins were also found to form similar pores. To define the polypeptide region involved in determining the pore size, we analyzed a collection of PulD variants and studied the roles of gates 1 and 2, which were previously reported to affect the pore size of filamentous phage f1 secretin pIV, in assembly and pore formation. Liposome leakage and a novel in vivo assay showed that replacement of the conserved proline residue at position 443 in PulD by leucine increased the apparent size of the pore. The in vitro approach described here could be used to study the pore properties of membrane proteins whose production in vivo is toxic.  相似文献   

8.
Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis.  相似文献   

9.
Prokaryotic secretion relies on proteins that are widely conserved, including NTPases and secretins, and on proteins that are system specific. The Tad secretion system in Aggregatibacter actinomycetemcomitans is dedicated to the assembly and export of Flp pili, which are needed for tight adherence. Consistent with predictions that RcpA forms the multimeric outer membrane secretion channel (secretin) of the Flp pilus biogenesis apparatus, we observed the RcpA protein in multimers that were stable in the presence of detergent and found that rcpA and its closely related homologs form a novel and distinct subfamily within a well-supported gene phylogeny of the entire secretin gene superfamily. We also found that rcpA-like genes were always linked to Aggregatibacter rcpB- or Caulobacter cpaD-like genes. Using antisera, we determined the localization and gross abundances of conserved (RcpA and TadC) and unique (RcpB, RcpC, and TadD) Tad proteins. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, localized to the bacterial outer membrane. RcpA, RcpC, and TadD were also found in the inner membrane, while TadC localized exclusively to the inner membrane. The RcpA secretin was necessary for wild-type abundances of RcpB and RcpC, and TadC was required for normal levels of all three Rcp proteins. TadC abundance defects were observed in rcpA and rcpC mutants. TadD production was essential for wild-type RcpA and RcpB abundances, and RcpA did not multimerize or localize to the outer membrane without the expression of TadD. These data indicate that membrane proteins TadC and TadD may influence the assembly, transport, and/or function of individual outer membrane Rcp proteins.  相似文献   

10.
Secretins are a family of large bacterial outer membrane protein complexes mediating the transport of complex structures, such as type IV pili, DNA and filamentous phage, or various proteins, such as extracellular enzymes and pathogenicity determinants. PilQ of the thermophilic bacterium Thermus thermophilus HB27 is a member of the secretin family required for natural transformation. Here we report the isolation, structural, and functional analyses of a unique PilQ from T. thermophilus. Native PAGE, gel filtration chromatography, and electrophoretic mobility shift analyses indicated that PilQ forms a macromolecular homopolymeric complex that binds dsDNA. Electron microscopy showed that the PilQ complex is 15 nm wide and 34 nm long and consists of an extraordinary stable "cone" and "cup" structure and five ring structures with a large central channel. Moreover, the electron microscopic images together with secondary structure analyses combined with structural data of type II protein secretion system and type III protein secretion system secretins suggest that the individual rings are formed by conserved domains of alternating α-helices and β-sheets. The unprecedented length of the PilQ complex correlated well with the distance between the inner and outer membrane of T. thermophilus. Indeed, PilQ was found immunologically in both membranes, indicating that the PilQ complex spans the entire cell periphery of T. thermophilus. This is consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus mediating DNA transport across the outer membrane and periplasmic space in a single-step process.  相似文献   

11.
Background:Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient acquisition.Methods:The study include investigation of 50 isolates of MDRPA for transport secretion system and resistance for antibiotics. Molecular diagnosis using P. aeruginosa specific primer pairs, investigation of AprF, HasF, XcpQ, HxcQ, PscC, CdrB, CupB3, and Hcp using specific primer pairs by PCR were also performed.Results:The results revealed high resistance to beta lactam antibiotics (78% for ceftazidime, 78% for cefepime and 46% for piperacillin) can indicate possessing of isolates for beta lactamases and this confirmed by dropping resistance to piperacillin to 16% when combined with tazobactam. Also, the results shown the ability of MDRPA for pyocyanin biosynthesis using the system of genes.Conclusion:The current study conclude that all isolates of P. aeruginosa were highly virulent due to their possessing of all transport secretion system to deliver different effector proteins with possible harmful effects of these proteins.Key Words: Drug resistance, MDR, Efflux pump, Pseudomonas aeruginosa  相似文献   

12.
Secretins form large oligomeric assemblies in the membrane that control both macromolecular secretion and uptake. Several Pasteurellaceae are naturally competent for transformation, but the mechanism for DNA assimilation is largely unknown. In Haemophilus influenzae, the secretin ComE has been demonstrated to be essential for DNA uptake. In closely related Aggregatibacter actinomycetemcomitans, an opportunistic pathogen in periodontitis, the ComE homolog HofQ is believed to be the outer membrane DNA translocase. Here, we report the structure of the extra-membranous domains of HofQ at 2.3 Å resolution by X-ray crystallography. We also show that the extra-membranous domains of HofQ are capable of DNA binding. The structure reveals two secretin-like folds, the first of which is formed by means of a domain swap. The second domain displays extensive structural similarity to K homology (KH) domains, including the presence of a GxxG motif, which is essential for the nucleotide-binding function of KH domains, suggesting a possible mechanism for DNA binding by HofQ. The data indicate a direct involvement in DNA acquisition and provide insight into the molecular basis for natural competence.  相似文献   

13.
14.
The outer membrane (OM) of Gram-negative bacteria provides the cell with a formidable barrier that excludes external threats. The two major constituents of this asymmetric barrier are lipopolysaccharide (LPS) found in the outer leaflet, and glycerophospholipids (GPLs) in the inner leaflet. Maintaining the asymmetric nature and balance of LPS to GPLs in the OM is critical for bacterial viability. The biosynthetic pathways of LPS and GPLs are well characterized, but unlike LPS transport, how GPLs are translocated to the OM remains enigmatic. Understanding this aspect of cell envelope biology could provide a foundation for new antibacterial therapies. Here, we report that YhdP and its homologues, TamB and YdbH, members of the “AsmA-like” family, are critical for OM integrity and necessary for proper GPL transport to the OM. The absence of the two largest AsmA-like proteins (YhdP and TamB) leads to cell lysis and antibiotic sensitivity, phenotypes that are rescued by reducing LPS synthesis. We also find that yhdP, tamB double mutants shed excess LPS through outer membrane vesicles, presumably to maintain OM homeostasis when normal anterograde GPL transport is disrupted. Moreover, a yhdP, tamB, ydbH triple mutant is synthetically lethal, but if GPL transport is partially restored by overexpression of YhdP, the cell shape adjusts to accommodate increased membrane content as the cell accumulates GPLs in the IM. Our results therefore suggest a model in which “AsmA-like” proteins transport GPLs to the OM, and when hindered, changes in cell shape and shedding of excess LPS aids in maintaining OM asymmetry.  相似文献   

15.
The Myxococcus xanthus sglA1 spontaneous mutation was originally isolated because it allowed dispersed cell growth in liquid yet retained the ability to form fruiting bodies. Consequently, most of today’s laboratory strains either contain the sglA1 mutation or were derived from strains that carry it. Subsequent work showed that sglA was a gene for social gliding motility, a process which is mediated by type IV pili. Here sglA is shown to map to the major pil cluster and to encode a 901-amino-acid open reading frame (ORF) that is homologous to the secretin superfamily of proteins. Secretins form a channel in the outer membrane for the transport of macromolecules. The closest homologs found were PilQ proteins from Pseudomonas aeruginosa and Neisseria gonorrhoeae, which are required for type IV pili biogenesis and twitching motility. To signify these molecular and functional similarities, we have changed the name of sglA to pilQ. The hypomorphic pilQ1 (sglA1) allele was sequenced and found to contain two missense mutations at residues 741 (G→S) and 762 (N→G). In addition, 19 independent social (S)-motility mutations are shown to map to the pilQ locus. In-frame deletions of pilQ and its downstream gene, orfL, were constructed. pilQ is shown to be essential for pilus biogenesis, S-motility, rippling, and fruiting body formation, while orfL is dispensable for these processes. The pilQ1 allele, but not the ΔpilQ allele, was found to render cells hypersensitive to vancomycin, suggesting that PilQ1 alters the permeability properties of the outer membrane. Many differences between pilQ1 and pilQ+ strains have been noted in the literature. We discuss some of these observations and how they may be rationalized in the context of our molecular and functional findings.  相似文献   

16.
Many lipoproteins reside in the outer membrane (OM) of Gram-negative bacteria, and their biogenesis is dependent on the Lol (localization of lipoproteins) system. The periplasmic chaperone LolA accepts OM-destined lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. The exact nature of the LolA-lipoprotein complex is still unknown. The crystal structure of Escherichia coli LolA features an open β-barrel covered by α helices that together constitute a hydrophobic cavity, which would allow the binding of one acyl chain. However, OM lipoproteins contain three acyl chains, and the stoichiometry of the LolA-lipoprotein complex is 1:1. Here we present the crystal structure of Pseudomonas aeruginosa LolA that projects clear hydrophobic surface patches. Since these patches are large enough to accommodate acyl chains, their role in lipoprotein binding was investigated. Several LolA mutant proteins were created, and their functionality was assessed by studying their capacity to release lipoproteins produced in sphaeroplasts. Interruption of the largest hydrophobic patch completely destroyed the lipoprotein-releasing capacity of LolA, while interruption of smaller patches apparently reduced efficiency. Thus, the results show a new lipoprotein transport model that places (some of) the acyl chains on the hydrophobic surface patches.  相似文献   

17.
Pseudomonas aeruginosa is an opportunistic pathogen, which causes numerous infections and can adopt a versatile lifestyle. During chronic infection, P. aeruginosa becomes established as a bacterial community known as a biofilm. Biofilm formation results from the production of a matrix mainly comprised of exopolysaccharides. P. aeruginosa possesses several gene clusters which contribute to the formation of the matrix, including the pel genes. Among the pel genes, pelC encodes an outer membrane protein, which may serve as a transporter of polysaccharide to the bacterial cell surface. Whereas outer membrane proteins usually display an amphipathic β-barrel fold, we show that PelC requires a C-terminal amphipathic α-helix for outer membrane insertion and function. Such a structural feature has only previously been reported for the Wza outer membrane protein of Escherichia coli, and our data suggest that this characteristic may be found in a large family of proteins, particularly outer membrane proteins specialized in polysaccharide transport.  相似文献   

18.
Secretins are a large family of proteins associated with membrane translocation of macromolecular complexes, and a subset of this family, termed PilQ proteins, is required for type IV pilus biogenesis. We analysed the status of PilQ expression in Neisseria meningitidis (Mc) and found that PilQ? mutants were non-piliated and deficient in the expression of pilus-associated phenotypes. Sequence analysis of the 5′ portion of the pilQ ORF of the serogroup B Mc strain 44/76 showed the presence of seven copies of a repetitive sequence element, in contrast to the situation in N. gonorrhoeae (Gc) strains, which carry either two or three copies of the repeat. The derived amino acid sequence of the consensus nucleotide repeat was an octapeptide PAKQQAAA, designated as the small basic repeat (SBR). This gene segment was studied in more detail in a collection of 52 Mc strains of diverse origin by screening for variability in the size of the PCR-generated DNA fragments spanning the SBRs. These strains were found to harbour from four to seven copies of the repetitive element. No association between the number of copies and the serogroup, geographic origin or multilocus genotype of the strains was evident. The presence of polymorphic repeat elements in Mc PilQ is unprecedented within the secretin family. To address the potential function of the repeat containing domain, Mc strains were constructed so as to express chimeric PilQ molecules in which the number of SBR repeats was increased or in which the repeat containing domain was replaced in toto by the corresponding region of the Pseudomonas aeruginosa (Pa) PilQ protein. Although the strain expressing PilQ with an increased number of SBRs was identical to the parent strain in pilus phenotypes, a strain expressing PilQ with the equivalent Pa domain had an eightfold reduction in pilus expression level. The findings suggest that the repeat containing domain of PilQ influences Mc pilus expression quantitatively but not qualitatively.  相似文献   

19.
Piecing together the type III injectisome of bacterial pathogens   总被引:2,自引:0,他引:2  
The Type III secretion system is a bacterial 'injectisome' which allows Gram-negative bacteria to shuttle virulence proteins directly into the host cells they infect. This macromolecular assembly consists of more than 20 different proteins put together to collectively span three biological membranes. The recent T3SS crystal structures of the major oligomeric inner membrane ring, the helical needle filament, needle tip protein, the associated ATPase, and outer membrane pilotin together with electron microscopy reconstructions have dramatically furthered our understanding of how this protein translocator functions. The crucial details that describe how these proteins assemble into this oligomeric complex will need a hybrid of structural methodologies including EM, crystallography, and NMR to clarify the intra- and inter-molecular interactions between different structural components of the apparatus.  相似文献   

20.
The highly conserved pilM/N/O/P/Q gene cluster is among the core set of genes required for cell surface expression of type IV pili and associated twitching motility. With the exception of the outer membrane secretin, a multimer of PilQ subunits, the specific functions of the products encoded by this gene cluster are poorly characterized. Orthologous proteins in the related bacterial type II secretion system have been shown to interact to form an inner membrane complex required for protein secretion. In this study, we provide evidence that the PilM/N/O/P proteins form a functionally equivalent type IVa pilus complex. Using Pseudomonas aeruginosa as model organism, we found that all four proteins, including the nominally cytoplasmic PilM, colocalized to the inner membrane. Stability studies via Western blot analyses revealed that loss of one component has a negative impact on the levels of other members of the putative complex. Furthermore, complementation studies revealed that the stoichiometry of the components is important for the correct formation of a stable complex in vivo. We provide evidence that an intact inner membrane complex is required for optimal formation of the outer membrane complex of the type IVa pilus system in P. aeruginosa, as PilQ stability is negatively affected in its absence. Finally, we show that, in the absence of the pilin subunit, the levels of membrane-bound components of the inner membrane complex are negatively regulated by the PilR/S two-component system, suggesting a role for PilR/S in sensing the piliation status of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号