首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins that are thought to assemble into a pseudopilus, which is assumed to interact with the outer membrane pore, and may actively participate in the export of proteins. We report here biochemical evidence that the minor pseudopilins EpsI and EpsJ from Vibrio species interact directly with one another. Moreover, the 2.3 Å resolution crystal structure of a complex of EspI and EpsJ from Vibrio vulnificus represents the first atomic resolution structure of a complex of two different pseudopilin components from the T2SS. Both EpsI and EpsJ appear to be structural extremes within the family of type 4a pilin structures solved to date, with EpsI having the smallest, and EpsJ the largest, “variable pilin segment” seen thus far. A high degree of sequence conservation in the EpsI:EpsJ interface indicates that this heterodimer occurs in the T2SS of a large number of bacteria. The arrangement of EpsI and EpsJ in the heterodimer would correspond to a right-handed helical character of proteins assembled into a pseudopilus.  相似文献   

2.
The bacterial type II protein secretion (T2S) and type IV piliation (T4P) systems share several common features. In particular, it is well established that the T2S system requires the function of a pilus-like structure, called pseudopilus, which is built upon assembly of pilin-like subunits, called pseudopilins. Pilins and pseudopilins have a hydrophobic N-terminal region, which precedes an extended hydrophilic C-terminal region. In the case of pilins, it was shown that oligomerisation and formation of helical fibers, takes place through interaction between the hydrophobic domains. XcpT, is the most abundant protein of the Pseudomonas aeruginosa T2S, and was proposed to be the main component in the pseudopilus. In this study we present the high-resolution NMR structure of the hydrophilic domain of XcpT (XcpTp). XcpTp is lacking the C-terminal disulfide bridged “D” domain found in type IV pilins and likely involved in receptor binding. This is in agreement with the idea that the XcpT-containing pseudopilus is required for protein secretion and not for bacterial attachment. Interestingly, by solving the 3D structure of XcpTp we revealed that the previously called αβ-loop pilin region is in fact highly conserved among major type II pseudopilins and constitutes a specific consensus motif for identifying major pseudopilins, which belong to this family.  相似文献   

3.
The pseudopilus is a key feature of the type 2 secretion system (T2SS) and is made up of multiple pseudopilins that are similar in fold to the type 4 pilins. However, pilins have disulfide bridges, whereas the major pseudopilins of T2SS do not. A key question is therefore how the pseudopilins, and in particular, the most abundant major pseudopilin, GspG, obtain sufficient stability to perform their function. Crystal structures of Vibrio cholerae, Vibrio vulnificus, and enterohemorrhagic Escherichia coli (EHEC) GspG were elucidated, and all show a calcium ion bound at the same site. Conservation of the calcium ligands fully supports the suggestion that calcium ion binding by the major pseudopilin is essential for the T2SS. Functional studies of GspG with mutated calcium ion-coordinating ligands were performed to investigate this hypothesis and show that in vivo protease secretion by the T2SS is severely impaired. Taking all evidence together, this allows the conclusion that, in complete contrast to the situation in the type 4 pili system homologs, in the T2SS, the major protein component of the central pseudopilus is dependent on calcium ions for activity.In Gram-negative bacteria, the type 2 secretion system (T2SS)2 is used for the secretion of several important proteins across the outer membrane (1). The T2SS is also called the terminal branch of the general secretory pathway (Gsp) (2) and, in Vibrio species, the extracellular protein secretion (Eps) apparatus (3). This sophisticated multiprotein machinery spans both the inner and the outer membrane of Gram-negative bacteria and contains 11–15 different proteins. The T2SS consists of three major subassemblies (49): (i) the outer membrane complex comprising mainly the crucial multisubunit secretin GspD; (ii) the pseudopilus, which consists of one major and several minor pseudopilins; and (iii) an inner membrane platform, containing the cytoplasmic secretion ATPase GspE and the membrane proteins GspL, GspM, GspC, and GspF.The pseudopilus is a key element of the T2SS that forms a helical fiber spanning the periplasm. The fiber is assembled from multiple subunits of the major pseudopilin GspG (4, 5, 1014). The pseudopilus is thought to form a plug of the secretin pore in the outer membrane and/or to function as a piston during protein secretion. In recent years, studies of the T2SS pseudopilins led to structure determinations of all individual pseudopilins (13, 1517). The recent structure of the helical ternary complex of GspK-GspI-GspJ suggested that these three minor pseudopilins form the tip of the pseudopilus (17). A crystal structure of GspG from Klebsiella oxytoca was in a previous study combined with electron microscopy data to arrive at a helical arrangement, with no evidence for special features, such as disulfide bridges, other covalent links, or metal-binding sites, for stabilizing this major pseudopilin or the pseudopilus (13).The pseudopilins of the T2SS share a common fold with the type 4 pilins (1521). Pilins are proteins incorporated into pili, long appendages on the surface of bacteria forming thin, strong fibers with multiple functions (19, 21). Type 4 pilins and pseudopilins contain a prepilin leader sequence that is cleaved off by a prepilin peptidase, yielding mature protein (10, 11, 22). A distinct feature of the type 4 pilins is the occurrence of a disulfide bridge connecting β4 to a Cys in the so-called “D-region” near the C terminus (21). In a recent study (23) on the thin fibers of Gram-positive bacteria, isopeptide units appeared to be essential for providing these filaments sufficient cohesion and stability. A key question was therefore whether the major pseudopilin GspG also requires a special feature to obtain sufficient stability to perform its function.  相似文献   

4.
Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system,which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a “piston-like” manner. We report here the 2.0 Å resolution crystal structure of an N-terminally truncated variant of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal α-helix and C-terminal β-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large β-sheet in the variable domain, where GspG contains an α-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved β-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.  相似文献   

5.
In Gram-negative bacteria, type II secretion systems (T2SS) assemble inner membrane proteins of the major pseudopilin PulG (GspG) family into periplasmic filaments, which could drive protein secretion in a piston-like manner. Three minor pseudopilins PulI, PulJ and PulK are essential for protein secretion in the Klebsiella oxytoca T2SS, but their molecular function is unknown. Here, we demonstrate that together these proteins prime pseudopilus assembly, without actively controlling its length or secretin channel opening. Using molecular dynamics, bacterial two-hybrid assays, cysteine crosslinking and functional analysis, we show that PulI and PulJ nucleate filament assembly by forming a staggered complex in the plasma membrane. Binding of PulK to this complex results in its partial extraction from the membrane and in a 1-nm shift between their transmembrane segments, equivalent to the major pseudopilin register in the assembled PulG filament. This promotes fully efficient pseudopilus assembly and protein secretion. Therefore, we propose that PulI, PulJ and PulK self-assembly is thermodynamically coupled to the initiation of pseudopilus assembly, possibly setting the assembly machinery in motion.  相似文献   

6.
The type II secretion pathway of Pseudomonas aeruginosa is involved in the extracellular release of various toxins and hydrolytic enzymes such as exotoxin A and elastase. This pathway requires the function of a macromolecular complex called the Xcp secreton. The Xcp secreton shares many features with the machinery involved in type IV pilus assembly. More specifically, it involves the function of five pilin-like proteins, the XcpT-X pseudopilins. We show that, upon overexpression, the XcpT pseudopilin can be assembled in a pilus, which we call a type II pseudopilus. Image analysis and filtering of electron micrographs indicated that these appendages are composed of individual fibrils assembled together in a bundle structure. Our observations thus revealed that XcpT has properties similar to those of type IV pilin subunits. Interestingly, the assembly of the type II pseudopilus is not exclusively dependent on the Xcp machinery but can be supported by other similar machineries, such as the Pil (type IV pilus) and Hxc (type II secretion) systems of P. aeruginosa. In addition, heterologous pseudopilins can be assembled by P. aeruginosa into a type II pseudopilus. Finally, we showed that assembly of the type II pseudopilus confers increased bacterial adhesive capabilities. These observations confirmed the ability of pseudopilins to form a pilus structure and raise questions with respect to their function in terms of secretion and adhesion, two crucial biological processes in the course of bacterial infections.  相似文献   

7.
Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells.  相似文献   

8.
The inhibition of highly purified rat liverl-threonine dehydratase (l-threonine hydro-lyase (deaminating), EC 4.2.1.16) by aminothiols (l-cysteine,d-cysteine, cysteamine) has been studied. Single inhibition experiments evaluated by Lineweaver-Burk and Dixon plots showed, in a given concentration range, partially (parabolic) competitive inhibitions, indicating two binding sites for each inhibitor. Double inhibition experiments revealed that the inhibition was antagonistic, the two inhibitors weakening each other's effect. Formation of EI1 and EI2 binary complexes, and ESI1, ESI2 and EI1I2 ternary complexes was demonstrated, while formation of the quaternary complex ESI1I2 was ruled out. It is assumed that one inhibitor-binding site coincides with the substrate-binding center while the second inhibitor-binding (allosteric, regulatory) site may comprise the pyridoxal-phosphate-binding SH group(s). The comparison between Km and Ki values and the evaluation of intracellular concentrations ofl-threonine,l-cysteine and cysteamine suggest a possible physiological role of the inhibition.  相似文献   

9.
The type II secretion complex exports folded proteins from the periplasm to the extracellular milieu. It is used by the pathogenic bacterium Vibrio cholerae to export several proteins, including its major virulence factor, cholera toxin. The pseudopilus is an essential component of the type II secretion system and likely acts as a piston to push the folded proteins across the outer membrane through the secretin pore. The pseudopilus is composed of the major pseudopilin, EpsG, and four minor pseudopilins, EpsH, EpsI, EpsJ and EpsK. We determined the x-ray crystal structure of the head domain of EpsH at 1.59 Å resolution using molecular replacement with the previously reported EpsH structure, 2qv8, as the template. Three additional N-terminal amino acids present in our construct prevent an artifactual conformation of residues 160–166, present in one of the two monomers of the 2qv8 structure. Additional crystal contacts stabilize a long flexible loop comprised of residues 104–135 that is more disordered in the 2qv8 structure but is partially observed in our structure in very different positions for the two EpsH monomers in the asymmetric unit. In one of the conformations the loop is highly extended. Modeling suggests the highly charged loop is capable of contacting EpsG and possibly secreted protein substrates, suggesting a role in specificity of pseudopilus assembly or secretion function.  相似文献   

10.
The formation of binary, ternary, and quaternary complexes between phosphofructokinase, manganese, and substrates has been demonstrated by use of pulsed nuclear magnetic resonance techniques. A Scatchard plot of the interaction of manganese with phosphofructokinase as determined by electron paramagnetic resonance shows two types of manganese binding sites. Phosphofructokinase seems to contain one or two of the metal binding sites with Kd = 20 μm and ?b ≦ 4, and perhaps, as many as 14 binding sites with Kd ~ 0.8 mm and ?b ≦ 12 ± 2 per enzyme. Addition of ATP or ADP results in a further enhancement of the relaxation rate indicating ternary complex formation. The concentration of ATP and ADP which results in half maximal change of enhancement is 30–100 μm and 80 μm, respectively. No change in the water proton relaxation rate was detected upon addition of fructose-6-P or fructose-1,6-bisphosphate. A quaternary complex was detected by proton relaxation measurements upon addition of fructose-6-P to a reaction mixture containing β, γ-methylene ATP, manganese, and enzyme with 50 μm fructose-6-P required to obtain the half maximal observed effect. This evidence for a quaternary complex is consistent with a sequential reaction mechanism for phosphofructokinase.  相似文献   

11.
The type II secretion system (T2SS) exports folded proteins from the periplasms of Gram‐negative bacteria. The type IV pilus system (T4PS) is a multifunctional machine used for adherence, motility and DNA transfer in bacteria and archaea. Partial sequence identity between the two systems suggests that they are related and might function via a similar mechanism, the dynamic assembly and disassembly of pseudopilus (T2SS) or pilus (T4PS) filaments. The major subunit in each system is thought to form the bulk of the (pseudo)pilus, while minor (low‐abundance) subunits have proposed roles in assembly initiation, antagonism of disassembly, or modulation of (pseudo)pilus functional properties. In this issue, Cisneros et al. ( 2012 ) extend their previous finding that pseudopilus assembly is primed by the minor pseudopilins, showing that the same proteins can initiate assembly of Escherichia coli T4P. Similarly, they show that the E. coli minor pilins prime the polymerization of T2S pseudopili, although unlike genuine pseudopili, the chimeric filaments did not support secretion. This work reinforces the notion of a common assembly mechanism for the T2S and T4P systems.  相似文献   

12.
Complexes of the types cis- and trans-Pt(amine)2I2 were studied by spectroscopic methods, especially by multinuclear NMR spectroscopy. In 195Pt NMR, the cis diiodo compounds with primary amines were observed between −3342 and −3357 ppm in acetone, while the trans compounds were found between −3336 and −3372 ppm. For the secondary amines, the chemical shifts were observed at lower fields. In 1H NMR, the trans complexes were observed at higher fields than the cis compounds, while in 13C NMR, the reverse was observed. The 2J(195Pt-1H) and 3J(195Pt-1H) coupling constants are larger for the cis compounds (ave. 67 and 45 Hz, respectively) than for the trans isomers (ave. 59 and 38 Hz). In 13C NMR, the values of 2J(195Pt-13C) and 3J(195Pt-13C) were also found to be larger for the cis complexes (ave. 17 and 39 Hz versus 11 and 28 Hz). There seems to be a slight dependence of the pKa values of the protonated amines or the proton affinity in the gas phase with the δ(Pt) chemical shifts. The crystal structures of eight diiodo complexes were determined. These compounds are cis-Pt(CH3NH2)2I2, cis-Pt(n-C4H9NH2)2I2, cis-Pt(Et2NH)2I2, trans-Pt(n-C3H7NH2)2I2, trans-Pt(iso-C3H7NH2)2I2, trans-Pt(n-C4H9NH2)2I2, trans-Pt(t-C4H9NH2)2I2 and trans-Pt(Me2NH)2I2. The Pt-N bond distances located in trans position to the iodo ligands were compared to those located in trans position to the amines. The Pt-N bond in cis-Pt(Et2NH)2I2 are much longer than the others, probably caused by the steric hindrance of the two very bulky ligands located in cis positions.  相似文献   

13.
Models are presented for the joint dynamics of predators and prey, maintained in continuous flow chemostat culture. The predators are visualized as subsisting on one or more prey organisms, which in turn are visualized as subsisting on one or more substrate resources supplied by the investigator. The dynamic equations are translated into an analogous Lotka-Volterra predation model, and the criteria for the existence and stability of various equilibria are indicated. Denoting the number of different predator organisms as NH, the number of different prey organisms by NI and the number of different substrates as NJ, it is shown that the joint coexistence of all components requires 0 ? NI ? NH ? NJ. The model is extended to more complex situations by including additional trophic layers and by allowing trophic layer “leap-frogging.” The model may always be translated into an approximately quadratic differential equation of the Lotka-Volterra type. The α- and β-coefficients of these latter are really variables, and become quite complex for some of the multi-layered models.  相似文献   

14.
In a previous paper kinetic equations of secondary active transport by co-transport have been derived. In the present paper these equations have been expanded by including the effect of an electrical potential difference in order to make them applicable to the more realistic systems of secondary active transport driven by the gradients of Na+ or H+. Thermodynamically an electrical potential difference is as a driving force fully exchangeable with an equivalent chemical potential difference. This is not necessarily so for the kinetics of co-transport. It is not always the same whether a given difference in electrochemical activity of the driver ion is mainly osmotic, i.e. due to difference in concentration, or electric, i.e. due to a difference in the electrochemical activity coefficient. In most cases a difference in concentration is more effective in driving co-transport than is an equivalent difference in electrical potential leading to the same difference in electrical activity. The effectiveness of the latter highly depends on the model, whether it is of the affinity type or of the velocity type, but also on whether the loaded or the unloaded carrier bears an electrical charge. With the same electrical potential difference co-transport is as a rule faster if the ternary complex rather than the empty carrier is charged. Also the “standard parameters”, (see Glossary, page 62) Jmax and Km, of the overall transport respond differently to the introduction of an electrical potential difference, depending on the model. So an electrical potential difference will mostly affect Km if the loaded carrier is ionic, and mostly Jmax if the empty carrier is ionic, provided that the mobility of the loaded carrier is greater than that of the empty one. On the other hand, distinctive criteria between affinity type and velocity type models are partly affected by an electrical potential difference. If the translocation steps of loaded and unloaded carrier are no longer rate limiting for the overall transport, electrical effects on the transport rate are bound to vanish as does the activation by co-transport.  相似文献   

15.
The Type II secretion nanomachine transports folded proteins across the outer membrane of Gram-negative bacteria. Recent X-ray crystallography, electron microscopy, and molecular modeling studies provide structural insights into three functionally and spatially connected units of this nanomachine: the cytoplasmic and inner membrane energy-harvesting complex, the periplasmic helical pseudopilus, and the outer membrane secretin. Key advances include cryo-EM reconstruction of the secretin and demonstration that it interacts with both secreted substrates and a crucial transmembrane clamp protein, plus a biochemical and structural explanation of the role of low-abundance pseudopilins in initiating pseudopilus growth. Combining structures and protein interactions, we synthesize a 3D view of the complete complex consistent with a stepwise pathway in which secretin oligomerization defines sites of nanomachine biogenesis.  相似文献   

16.
《Inorganica chimica acta》1988,144(2):193-199
Addition of 1,2-W2Cl2(NMe2)4(W≡W) to a toluene slurry of LiCH(SiMe3)2(2 equiv) results in the formation of 1,2-W2[CH(SiMe3)2]2(NMe2)4(W≡W) (I) in 79% isolated yield. Compound I has been characterized by 1H and 13C NMR, IR, elemental analysis and single-crystal X-ray diffraction. The molecule exists exclusively in the gauche conformation in solution and in the solid state with WW = 2.320(1) Å. Compound I is very sterically encumbered as evidenced by: (1) large WWC angles, 110°, at the disyl ligand; (2) skewing of the NC2 planes of the NMe2 ligands off the WW vector; (3) anomalously large barriers to WNM2 bond rotation in solution; (4) the inertness of I towards CO2 and alcohols. However, compound I reacts with acetic anhydride to form 1,2-W2[CH(SiMe3)2]2(O2CMe)4(W≡W) (II) in 31% isolated yield. Compound II has been characterized by 1H and 13C NMR, IR, and elemental analysis. The mechanistic implications of these studies with regard to alcoholysis and CO2 insertion reactions of other 1,2-W2R2(NMe2)4 compounds are discussed. Crystal data for 1,2-W2[CH(SiMe3)2]2(NMe2)4 at −140°C: space group P21/n, a = 12.555(3), b = 18.699(5), c = 15.214(4) Å, β = 95.24(1)° and Z = 4.  相似文献   

17.
The in vivo reduction of ketone I (1,2-3H-dihydro(3,2,1-kl)pyridophenothiazine-3-one) by Rhizopus arrhizus Fisher is due to a NADPH-dependent alcohol dehydrogenase. This cytosolic enzyme displays a narrow specificity for ketone I, its pH optimum being pH 8. Partially purified alcohol dehydrogenase has a good affinity for ketone I (Km = 68 μM).  相似文献   

18.
19.
Factor (F) VIIIa forms a number of contacts with FIXa in assembling the FXase enzyme complex. Surface plasmon resonance was used to examine the interaction between immobilized biotinylated active site-modified FIXa, and FVIII and FVIIIa subunits. The FVIIIa A2 subunit bound FIXa with high affinity (Kd = 3.9 ± 1.6 nm) that was similar to the A3C1C2 subunit (Kd = 3.6 ± 0.6 nm). This approach was used to evaluate a series of baculovirus-expressed, isolated A2 domain (bA2) variants where alanine substitutions were made for individual residues within the sequence 707-714, the C-terminal region of A2 thought to be FIXa interactive. Three of six bA2 variants examined displayed 2- to 4-fold decreased affinity for FIXa as compared with WT bA2. The variant bA2 proteins were also tested in two reconstitution systems to determine activity and affinity parameters in forming FXase and FVIIIa. Vmax values for all variants were similar to the WT values, indicating that these residues do not affect cofactor function. All variants showed substantially greater increases in apparent Kd relative to WT in reconstituting the FXase complex (8- to 26-fold) compared with reconstituting FVIIIa (1.3- to 6-fold) suggesting that the mutations altered interaction with FIXa. bA2 domain variants with Ala replacing Lys707, Asp712, and Lys713 demonstrated the greatest increases in apparent Kd (17- to 26-fold). These results indicate a high affinity interaction between the FVIIIa A2 subunit and FIXa and show a contribution of several residues within the 707-714 sequence to this binding.  相似文献   

20.
The participation of H-2I gene products in generating virus-specific proliferative and/or cytotoxic T-lymphocyte (CTL) responses was investigated. Spleen cells from mice infected with vaccinia virus were restimulated secondarily in vitro with syngeneic virus-infected peritoneal exudate cells (PEC) and then restimulated in tertiary cultures with virus-infected PEC from syngeneic and partially histoincompatible strains of mice. Based on the finding that comparable proliferative responses resulted when stimulating the responding cells were histocompatible at the H-2K, I, or D region of the major histocompatibility complex (MHC), the additively enhanced, but not potentiated, proliferation caused by identity at two or three H-2 regions was analyzed. Enhancement of proliferation followed when the H-2K/D components plus virus and the H-2I components plus virus were either on the same, or alternatively on two, stimulating cells. This suggests that H-2K, D, and I plus virus trigger distinct T-cell subsets. A virus-specific CTL response was generated in vitro when spleen cells from virus-primed mice and even unprimed mice were stimulated with cells sharing only H-2K and/or H-2D of the MHC. Identity at the H-2I region did not stimulate a CTL response, nor did it influence the magnitude of the KD restricted response. Nevertheless, the presence of anti-Ia antiserum in cultures of syngeneic stimulators and responders inhibited the cytotoxic response to a great extent. Therefore, H-2I region products seem to participate in the generation of virus-specific CTL in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号