首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autosomal dominant peripheral sensory neuropathy HSAN1 results from mutations in the LCB1 subunit of serine palmitoyltransferase (SPT). Serum from patients and transgenic mice expressing a disease-causing mutation (C133W) contain elevated levels of 1-deoxysphinganine (1-deoxySa), which presumably arise from inappropriate condensation of alanine with palmitoyl-CoA. Mutant heterodimeric SPT is catalytically inactive. However, mutant heterotrimeric SPT has ∼10–20% of wild-type activity and supports growth of yeast cells lacking endogenous SPT. In addition, long chain base profiling revealed the synthesis of significantly more 1-deoxySa in yeast and mammalian cells expressing the heterotrimeric mutant enzyme than in cells expressing wild-type enzyme. Wild-type and mutant enzymes had similar affinities for serine. Surprisingly, the enzymes also had similar affinities for alanine, indicating that the major affect of the C133W mutation is to enhance activation of alanine for condensation with the acyl-CoA substrate. In vivo synthesis of 1-deoxySa by the mutant enzyme was proportional to the ratio of alanine to serine in the growth media, suggesting that this ratio can be used to modulate the relative synthesis of sphinganine and 1-deoxySa. By expressing SPT as a single-chain fusion protein to ensure stoichiometric expression of all three subunits, we showed that GADD153, a marker for endoplasmic reticulum stress, was significantly elevated in cells expressing mutant heterotrimers. GADD153 was also elevated in cells treated with 1-deoxySa. Taken together, these data indicate that the HSAN1 mutations perturb the active site of SPT resulting in a gain of function that is responsible for the HSAN1 phenotype.  相似文献   

2.
D A Vinarov  T Nowak 《Biochemistry》1999,38(37):12138-12149
There are presently several proposed catalytic mechanisms of yeast enolase, all of which have emerged from separate structural investigations of enolase from yeast and lobster muscle. However, the identities of the residues functioning as the general acid/base pair are not yet established unambiguously. In the Mn(2+)-phosphoglycolate complex of lobster muscle enolase, the imidazole group of His157 (His159 in the yeast enolase numbering system) is in van der Waals contact (4.5 A) with the C(2) of the inhibitor [Duquerroy et al. (1995) Biochemistry 34, 12513-12523]. To gain further information about the role played by His159 in the catalytic mechanism of yeast enolase this residue has been mutated to Ala. The gene encoding for the H159A mutation has been constructed and the mutant protein has been expressed in Escherichia coli. The purified mutant protein is folded properly as indicated by near- and far-UV circular dichroism and fluorescence data, and the mutation has no significant effect on the formation of ternary and quaternary enzyme-ligand complexes. In a typical assay, H159A showed 0.01% of wild-type specific activity, which corresponds to a reduction in k(cat) of 4 orders of magnitude. The H159A fails to ionize the C-2 proton of either 2-PGA or phosphoglycolate. These findings are consistent with His159 serving as a potential catalytic base in the enolase reaction. We have suggested that His159 could also serve as a metal ligand at the third, inhibitory, metal binding site. This proposal is consistent with the catalytic mechanism of yeast enolase. Binding of metal ion at site III interferes with His159 reacting as the catalytic base, i.e., abstracting the C(2) proton from 2-PGA. Metal binding studies support the above proposal. Mn(2+) binding at sites I and II for the His159Ala mutant is identical to that of wild type. The binding of Mn(2+) at the third, inhibitory site of H159A is a factor of 3 weaker compared to wild-type enolase. The factor of 3 in binding is reasonable for the contribution to binding strength of a single nondominant ligand in a chelate [Klemba, M., and Regan, L. (1995) Biochemistry 34, 10094-10100. Regan, L. (1993) Annu. Rev. Biophys. Biomol. Struct. 22, 257-281. Cha et al. (1994) J. Biol. Chem. 269, 2687-2694].  相似文献   

3.
The enzyme serine palmitoyltransferase (SPT) catalyzes the rate-limiting step in the de novo synthesis of sphingolipids. Previously the mammalian SPT was described as a heterodimer composed of two subunits, SPTLC1 and SPTLC2. Recently we identified a novel third SPT subunit (SPTLC3). SPTLC3 shows about 68% identity to SPTLC2 and also includes a pyridoxal phosphate consensus motif. Here we report that the overexpression of SPTLC3 in HEK293 cells leads to the formation of two new sphingoid base metabolites, namely C16-sphinganine and C16-sphingosine. SPTLC3-expressing cells have higher in vitro SPT activities with lauryl- and myristoyl-CoA than SPTLC2-expressing cells, and SPTLC3 mRNA expression levels correlate closely with the C16-sphinganine synthesis rates in various human and murine cell lines. Approximately 15% of the total sphingolipids in human plasma contain a C16 backbone and are found in the high density and low density but not the very low density lipoprotein fraction. In conclusion, we show that the SPTLC3 subunit generates C16-sphingoid bases and that sphingolipids with a C16 backbone constitute a significant proportion of human plasma sphingolipids.Sphingolipids comprise a class of bioactive lipids that contribute to plasma membrane and plasma lipoprotein formation and exert a broad range of cellular signaling functions such as cell proliferation, endocytosis, and the response of cells to inflammatory and apoptotic stress signals (14).Sphingolipids are derived from the aliphatic amino alcohol sphingosine, which is formed from the precursors l-serine and palmitoyl-CoA. The condensation of serine with palmitoyl-CoA is catalyzed by the enzyme serine palmitoyltransferase (SPT)3 (EC 2.3.1.50) and leads to the intermediate 3-ketodihydrosphingosine. 3-Ketodihydrosphingosine is then rapidly converted to dihydrosphingosine (sphinganine) and dihydroceramide. The desaturation of dihydroceramide generates ceramide, and the breakdown of ceramide by ceramidase finally forms sphingosine. The sphingosine backbone of ceramide is usually O-linked to a polar head group such as phosphocholine or carbohydrates and amide-linked to an acyl group. The combination of the sphingosine backbone with different head groups, in particular with various oligosaccharides, leads to a complex variety of different sphingolipid metabolites (5, 6). Moreover, it was shown recently that SPT is also able to use l-alanine as an alternative substrate, thereby generating the atypical sphingoid base 1-deoxysphinganine (7).SPT belongs to the family of pyridoxal phosphate-dependent α-oxoamine synthases. Other members of this family include 5-aminolevulinic acid synthase, 2-amino-3 ketobutyrate ligase, and 8-amino-7-oxononanoate synthase (8). SPT is ubiquitously expressed, and enzyme activity has been detected in all tissues tested so far including brain, lung, liver, kidney, and muscle (9). SPT is essential for embryonic development, and homozygous SPT knock-out mice are not viable (10). SPT has been believed to be a heterodimer composed of two subunits, SPTLC1 and SPTLC2. The two subunits SPTLC1 and SPTLC2 show a similarity at AA level of ∼20% and are highly conserved among species. Although both subunits seem to be required for enzyme activity, only the SPTLC2 subunit contains a pyridoxal phosphate binding motif (8, 11).Recently, we identified and cloned a novel third SPT subunit (SPTLC3) (12). The SPTLC3 sequence shows 68% homology to the SPTLC2 subunit and also includes a pyridoxal phosphate consensus motive. The SPTLC3 gene is present in mammals, birds, and some lower vertebrates like fish (Danio rerio) and frog (Xenopus laevis) but not in invertebrate lineages. The SPTLC3 mRNA has been detected in most human tissues with a particularly high expression in placenta (12), indicating a special role for SPTLC3 during development and pregnancy. By using immunoprecipitation, native gel analysis, cross-linking studies, and size exclusion chromatography, it was demonstrated that the native SPT enzyme contains all three subunits and forms a protein complex with a molecular mass of about 460 kDa (13). However, because SPTLC2 and SPTLC3 are encoded by two distinct genes and expressed within the same cell types, we assume a distinct function for the two subunits. One of these differences might be altered substrate affinity or enzymatic activity. This issue is addressed in the present study.  相似文献   

4.
The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met25 in ssSPTa and Val25 in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1S331F/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.  相似文献   

5.
6.
Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis and catalyzes the pyridoxal 5'-phosphate (PLP)-dependent decarboxylative condensation reaction of l-serine with palmitoyl-CoA to generate 3-ketodihydrosphingosine. The binding of l-serine alone to SPT leads to the formation of the external aldimine but does not produce a detectable amount of the quinonoid intermediate. However, the further addition of S-(2-oxoheptadecyl)-CoA, a nonreactive analogue of palmitoyl-CoA, caused the apparent accumulation of the quinonoid. NMR studies showed that the hydrogen-deuterium exchange at Calpha of l-serine is very slow in the SPT-l-serine external aldimine complex, but the rate is 100-fold increased by the addition of S-(2-oxoheptadecyl)-CoA, showing a remarkable substrate synergism in SPT. In addition, the observation that the nonreactive palmitoyl-CoA facilitated alpha-deprotonation indicates that the alpha-deprotonation takes place before the Claisen-type C-C bond formation, which is consistent with the accepted mechanism of the alpha-oxamine synthase subfamily enzymes. Structural modeling of both the SPT-l-serine external aldimine complex and SPT-l-serine-palmitoyl-CoA ternary complex suggests a mechanism in which the binding of palmitoyl-CoA to SPT induced a conformation change in the PLP-l-serine external aldimine so that the Calpha-H bond of l-serine becomes perpendicular to the plane of the PLP-pyridine ring and is favorable for the alpha-deprotonation. The model also proposed that the two alternative hydrogen bonding interactions of His(159) with l-serine and palmitoyl-CoA play an important role in the conformational change of the external aldimine. This is the unique mechanism of SPT that prevents the formation of the reactive intermediate before the binding of the second substrate.  相似文献   

7.
In the central nervous system chronic hypoxia has been suggested to cause neurodegenerations and protein aggregation, as in Alzheimer’s disease. Here we have shown protein aggregation during acute hypoxia in human primary cells. Clinically relevant acute hypoxia (pO2 = 25 mmHg) was produced by incubation of venous blood in vitro, where 18-hour incubation resulted in raise of pCO2 to 90 mmHg, accumulation of lactate and acidosis (pH 7.06). In hypoxic samples the number of necrotic, but not apoptotic, white blood cells increased to 9.6%. Viable cells displayed hypoxia-related changes such as a drop of mitochondrial membrane potential and changes in the plasma membrane. These changes coincided with the 2.6-fold increase in immunoreactivity of serine palmitoyltransferase subunit 1 (SPT1), which is the enzyme involved in HSN1-type neurodegeneration. SPT1 immunoreactivity was presented as large cytosolic aggregates, which appeared in viable hypoxic cells and remained in dead cells. SPT-positive aggregates were also found in cell nuclei. This data suggests that SPT1 aggregation preceded cell death in hypoxia and represents the first evidence of acute protein aggregation during hypoxia.  相似文献   

8.
Lynch DV  Fairfield SR 《Plant physiology》1993,103(4):1421-1429
The activity of serine palmitoyltransferase (palmitoyl-coenzyme A [CoA]:L-serine [Ser]-C-palmitoyltransferase [decarboxylating], EC 2.3.1.50), the enzyme catalyzing the first step in the synthesis of the long-chain base required for sphingolipid assembly, has been characterized in a plant system. Enzyme activity in a microsomal membrane fraction from summer squash fruit (Cucurbita pepo L. cv Early Prolific Straightneck) was assayed by monitoring the incorporation of L-[3H]Ser into the chloroform-soluble product, 3-ketosphinganine. Addition of NADPH to the assay system resulted in the conversion of 3-ketosphinganine to sphinganine. The apparent Km for Ser was approximately 1.8 mM. The enzyme exhibited a strong preference for palmitoyl-CoA, with optimal activity at a substrate concentration of 200 [mu]M. Pyridoxal 5[prime]-phosphate was required as a coenzyme. The pH optimum was 7.6, and the temperature optimum was 36 to 40[deg]C. Enzyme activity was greatest in the microsomal fraction obtained by differential centrifugation and was localized to the endoplasmic reticulum using marker enzymes. Two known mechanism-based inhibitors of the mammalian enzyme, L-cycloserine and [beta]-chloro-L-alanine, were effective inhibitors of enzyme activity in squash microsomes. Changes in enzyme activity with size (age) of squash fruit were observed. The results from this study suggest that the properties and catalytic mechanism of Ser palmitoyltransferase from squash are similar to those of the animal, fungal, and bacterial enzyme in most respects. The specific activity of the enzyme in squash microsomes ranged from 0.57 to 0.84 nmol min-1 mg-1 of protein, values 2- to 20-fold higher than those previously reported for preparations from animal tissues.  相似文献   

9.
We studied the effect of myriocin, an inhibitor of serine palmitoyltransferase, on cultured Leishmania (Viannia) braziliensis promastigotes. Myriocin significantly reduced synthesis of inositol phosphorylceramide, the major sphingolipid expressed in promastigotes as characterized by thin layer chromatography and electrospray ionization mass spectrometry. Log‐phase promastigotes treated with 1 μM myriocin showed a 52% reduction in growth rate and morphological alterations such as more rounded shape and shorter flagellum. Promastigotes treated with myriocin also displayed a variety of aberrant cell phenotypes. The percentage of cells with one nucleus and one kinetoplast (1N1K), following treatment with 1 or 5 μM myriocin, decreased from 89% (control value) to 27% or 3%, respectively. The percentage of cells with two nuclei (2N2K) varied from 7% (control value) to 19% and 6% for 1 or 5 μM myriocin‐treated parasites, respectively. High percentage of myriocin‐treated parasites exhibited large atypical cells presenting three or more nucleus (32% and 89% for 1 or 5 μM myriocin, respectively). Transmission electron microscopy following treatment with 1 μM myriocin showed the presence of 4N parasites possibly as a result of an incomplete cytokinesis. Addition of 3‐ketodihidrosphingosine to myriocin‐treated promastigotes rescue parasite growth and morphology. Addition of ethanolamine did not rescue the myriocin effect on parasite. Our findings indicate that sphingolipids are essential for the completion of cytokinesis, and may play a major role in cell proliferation in L. (V.) braziliensis, thus, differing from data described for Leishmania major sphingolipid‐free mutant, where addition of ethanolamine rescue wild‐type parasite characteristics.  相似文献   

10.
在pH7.5条件下,用NBS对PEP羧化酶中色氨酸残基进行共价修饰表明,PEP羧化酶中48个色氨酸残基均能被NBS修饰。用邹承鲁图解法求得,其中4个残基为酶表现催化活性所必需的。 PEP羧化酶的变构效应剂G6P、Gly及Mal分别与酶预保温后,再经NBS修饰,前两种处理中,同样浓度的NBS所用修饰的色氨酸残基数和处理后的残存酶活与对照相比有很大的差异,而用Mal处理的,两者与对照相差无几。  相似文献   

11.
Sphingomyelin (SM) is one of the major lipid components of plasma lipoproteins. Serine palmitoyltransferase (SPT) is the key enzyme in SM biosynthesis. Mice totally lacking in SPT are embryonic lethal. The liver is the major site for plasma lipoprotein biosynthesis, secretion, and degradation, and in this study we utilized a liver-specific knock-out approach for evaluating liver SPT activity and also its role in plasma SM and lipoprotein metabolism. We found that a deficiency of liver-specific Sptlc2 (a subunit of SPT) decreased liver SPT protein mass and activity by 95 and 92%, respectively, but had no effect on other tissues. Liver Sptlc2 deficiency decreased plasma SM levels (in both high density lipoprotein and non-high density lipoprotein fractions) by 36 and 35% (p < 0.01), respectively, and increased phosphatidylcholine levels by 19% (p < 0.05), thus increasing the phosphatidylcholine/SM ratio by 77% (p < 0.001), compared with controls. This deficiency also decreased SM levels in the liver by 38% (p < 0.01) and in the hepatocyte plasma membranes (based on a lysenin-mediated cell lysis assay). Liver-specific Sptlc2 deficiency significantly increased hepatocyte apoE secretion and thus increased plasma apoE levels 3.5-fold (p < 0.0001). Furthermore, plasma from Sptlc2 knock-out mice had a significantly stronger potential for promoting cholesterol efflux from macrophages than from wild-type mice (p < 0.01) because of a greater amount of apoE in the circulation. As a result of these findings, we believe that the ability to control liver SPT activity could result in regulation of lipoprotein metabolism and might have an impact on the development of atherosclerosis.Sphingomyelin (SM),2 an amphipathic phospholipid located in the surface monolayer of all classes of plasma lipoproteins (LDL/very low density lipoprotein, 70–75%; HDL, 25–30%) (1), has significant effects on lipoprotein metabolism.A number of studies indicate that plasma SM levels influence the metabolism of apoB-containing lipoproteins. It has been reported that SM, but not cholesterol, significantly inhibits triglyceride lipolysis by lipoprotein lipase (2, 3). It has also been found that SM in lipoproteins delays remnant clearance by decreasing the binding of apoE to cell membrane receptors (4).Plasma SM levels also influence high density lipoprotein (HDL) metabolism. There have been reports that SM affects the structure of discoidal and spherical HDL (5). SM can inhibit lecithin-cholesterol acyltransferase by decreasing its binding to HDL (6). A negative correlation between the SM content of HDL and lecithin-cholesterol acyltransferase activity was observed in studies with proteoliposomes or reconstituted HDL (7). SM-rich recombinant HDL can inhibit scavenger receptor class B type I-mediated cholesterol ester-selective uptake in HepG2 cells (8).It is known that subendothelial retention and aggregation of atherogenic lipoproteins play an important role in atherogenesis (9). LDL extracted from human atherosclerotic lesions is highly enriched in SM than in plasma LDL (1013). LDL retained in atherosclerotic lesions is acted on by an arterial wall sphingomyelinase, which promotes aggregation by converting SM to ceramide (1012). Sphingomyelinase deficiency diminishes lipoprotein retention within early atheromata and prevents lesion progression (14). The ratio of SM to PC is increased 5-fold in very low density lipoprotein from hypercholesterolemic rabbits (15). ApoE knock-out (KO) mice are a well known atherogenic model. It has been shown that plasma SM levels in these mice are 4-fold higher than in WT animals (16), and this may contribute to increased atherosclerosis (17, 18). It has also been shown that in humans, higher plasma SM levels and SM/PC ratios are independent risk factors for coronary heart disease (19, 20). All these data suggest that plasma SM plays a critical role in the development of atherosclerosis.The interaction of SM, cholesterol, and glycosphingolipids drives the formation of plasma membrane rafts (21). These rafts, formed in the Golgi apparatus, are targeted to the plasma membranes, where they are thought to exist as islands within the sea of bulk membrane. Although there is disagreement as to their content, rafts are considered in most reports to include about 3500 lipid molecules and 30 proteins (22). As much as 65% of the total cellular SM is located in these rafts (23). Manipulation of membrane SM levels by sphingomyelinase can alter lipid raft composition, thus modifying cell function. For example, cholesterol efflux from macrophage foam cells, a key step in reverse cholesterol transport, requires trafficking of cholesterol from intracellular sites to the plasma membranes. Sphingomyelinase deficiency decreases cholesterol efflux through promoting cholesterol sequestration by SM (24).The biochemical synthesis of SM occurs through the actions of serine palmitoyl-CoA transferase (SPT), 3-ketosphinganine reductase, ceramide synthase, dihydroceramide desaturase, and sphingomyelin synthase. Located in the endoplasmic reticulum membranes, SPT is the rate-limiting enzyme in the pathway (25). Mammalian SPT contains two subunits, Sptlc1 and Sptlc2, encoding 53- and 63-kDa proteins, respectively (26, 27). Data from in vivo and in vitro studies suggest that each subunit is stabilized by forming a dimer (or possibly larger multimer) with the other (28). Another subunit, Sptlc3, has been reported (29), and it is important that its functions be further characterized.Mice totally lacking Sptlc1 or Sptlc2 are embryonic lethal (30). Because the liver is the major site for plasma lipoprotein biosynthesis, secretion, and degradation, we utilized a liver-specific knock-out approach for evaluating liver SPT activity and its role in plasma SM and lipoprotein metabolism. We found that Sptlc2 deficiency in the liver decreases plasma SM and increases apoE levels.  相似文献   

12.
13.
Abstract: The role of carnitine palmitoyltransferase I (CPT-I) in the control of ketogenesis was studied in primary cultures of rat astrocytes. Ketone bodies were the major product of [14C]palmitate oxidation by cultured astrocytes, whereas CO2 made a minor contribution to the total oxidation products. Using tetradecylglycidate as a specific, cell-permeable inhibitor of CPT-I, a flux control coefficient of 0.77 ± 0.07 was calculated for CPT-I over the flux of [14C]palmitate to ketone bodies. CPT-I from astrocytes was sensitive to malonyl-CoA (IC50 = 3.4 ± 0.8 µ M ) and cross-reacted on western blots with an antibody raised against liver CPT-I. On the other hand, astrocytes expressed significant acetyl-CoA carboxylase (ACC) activity, and consequently they contained considerable amounts of malonyl-CoA. Western blot analysis of ACC isoforms showed that ACC in astrocytes—like in neurons, liver, and white adipose tissue—mostly comprised the 265-kDa isoform, whereas the 280-kDa isoform—which was highly expressed in skeletal muscle—showed much lower abundance. Forskolin was used as a tool to study the modulation of the ketogenic pathway in astrocytes. Thus, forskolin decreased in parallel ACC activity and intracellular malonyl-CoA levels, whereas it stimulated CPT-I activity and [14C]palmitate oxidation to both ketone bodies and CO2. Results show that in cultured astrocytes (a) CPT-I exerts a very high degree of control over ketogenesis from palmitate, (b) the ACC/malonyl-CoA/CPT-I system is similar to that of liver, and (c) the ACC/malonyl-CoA/CPT-I system is subject to regulation by cyclic AMP.  相似文献   

14.
干扰素α-2bHis89/His159的分子获得及性能分析   总被引:1,自引:0,他引:1  
目的:通过结构分析和定点突变,构建干扰素α-2bHis89/His159(IFNα-2bHis89/His159),以期获得高性能干扰素突变体。方法:采用PCR体外定点突变技术,使干扰素α-2b基因的第89位密码子由编码酪氨酸的TAC突变为编码组氨酸的CAC,第159位密码子由编码谷氨酸的GAA突变为编码组氨酸的CAC。将扩增片段克隆入pET23b表达载体,重组质粒转化大肠杆菌BL21(DE3)。表达的IFNα-2bHis89/His159经包涵体变性、复性、DEAE层析和CM层析纯化后,用WISH-VSV系统进行生物活性测定。以SD大鼠进行初步药代动力学研究。结果:IFNα-2bHis89/His159主要以包涵体形式表达,表达量占菌体总蛋白的40%以上。纯化后,IFNα-2bHis89/His159的纯度大于95%,比活性大于2.8×108IU/mg。相对于IFNα-2b较短的消除半衰期,IFNα-2bHis89/His159的消除半衰期得到延长,为2.34±0.27h。结论:构建了IFNα-2bHis89/His159的重组表达载体,并成功地在大肠杆菌中实现了高效表达,建立了IFNα-2bHis89/His159的纯化工艺,获得了体外活性增高并且体内稳定性得到改善的新型干扰素α-2b突变体。  相似文献   

15.
丝氨酸内肽酶在黄瓜叶片衰老中的作用   总被引:3,自引:0,他引:3  
采用丝氨酸内肽酶抑制剂和植物生长调节剂处理离体黄瓜叶片,研究了黄瓜叶片暗诱导衰老过程中丝氨酸内肽酶的作用。结果表明,6-BA50μmol/L与丝氨酸内肽酶抑制剂AEBSF能抑制叶片内肽酶活性的升高,延缓蛋白质降解,而ABA50μmol/L则促进了内肽酶活性的升高:其作用效果与AEBSF相反。活性电泳结果显示,黄瓜叶片中检测到6条内肽酶同工酶,其中4条(CEP2、3、4、6)为丝氨酸类型内肽酶,而ABA使丝氨酸内肽酶CEP2、3、4、6的活性明显增强,提示了丝氨酸类型内肽酶在黄瓜叶片衰老过程中具有重要作用。  相似文献   

16.
In BCR-ABL-expressing cells, sphingolipid metabolism is altered. Because the first step of sphingolipid biosynthesis occurs in the endoplasmic reticulum (ER), our objective was to identify ABL targets in the ER. A phosphoproteomic analysis of canine pancreatic ER microsomes identified 49 high scoring phosphotyrosine-containing peptides. These were then categorized in silico and validated in vitro. We demonstrated that the ER-resident human protein serine palmitoyltransferase long chain-1 (SPTLC1), which is the first enzyme of sphingolipid biosynthesis, is phosphorylated at Tyr164 by the tyrosine kinase ABL. Inhibition of BCR-ABL using either imatinib or shRNA-mediated silencing led to the activation of SPTLC1 and to increased apoptosis in both K562 and LAMA-84 cells. Finally, we demonstrated that mutation of Tyr164 to Phe in SPTLC1 increased serine palmitoyltransferase activity. The Y164F mutation also promoted the remodeling of cellular sphingolipid content, thereby sensitizing K562 cells to apoptosis. Our observations provide a mechanistic explanation for imatinib-mediated cell death and a novel avenue for therapeutic strategies.  相似文献   

17.

Background

Protein kinases (PKs) have emerged as the largest family of signaling proteins in eukaryotic cells and are involved in every aspect of cellular regulation. Great progresses have been made in understanding the mechanisms of PKs phosphorylating their substrates, but the detailed mechanisms, by which PKs ensure their substrate specificity with their structurally conserved catalytic domains, still have not been adequately understood. Correlated mutation analysis based on large sets of diverse sequence data may provide new insights into this question.

Methodology/Principal Findings

Statistical coupling, residue correlation and mutual information analyses along with clustering were applied to analyze the structure-based multiple sequence alignment of the catalytic domains of the Ser/Thr PK family. Two clusters of highly coupled sites were identified. Mapping these positions onto the 3D structure of PK catalytic domain showed that these two groups of positions form two physically close networks. We named these two networks as θ-shaped and γ-shaped networks, respectively.

Conclusions/Significance

The θ-shaped network links the active site cleft and the substrate binding regions, and might participate in PKs recognizing and interacting with their substrates. The γ-shaped network is mainly situated in one side of substrate binding regions, linking the activation loop and the substrate binding regions. It might play a role in supporting the activation loop and substrate binding regions before catalysis, and participate in product releasing after phosphoryl transfer. Our results exhibit significant correlations with experimental observations, and can be used as a guide to further experimental and theoretical studies on the mechanisms of PKs interacting with their substrates.  相似文献   

18.
19.
Role of HtrA in growth and competence of Streptococcus mutans UA159   总被引:3,自引:0,他引:3  
We report here that HtrA plays a role in controlling growth and competence development for genetic transformation in Streptococcus mutans. Disruption of the gene for HtrA resulted in slow growth at 37 degrees C, reduced thermal tolerance at 42 degrees C, and altered sucrose-dependent biofilm formation on polystyrene surfaces. The htrA mutant also displayed a significantly reduced ability to undergo genetic transformation. A direct association between HtrA and genetic competence was demonstrated by the increased expression of the htrA gene upon exposure to competence-stimulating peptide. The induction of htrA gradually reached a maximum at around 20 min, suggesting that HtrA may be involved in a late competence response. Complementation of the htrA mutation in a single copy on the chromosome of the mutant could rescue the defective growth phenotypes but not transformability, apparently because a second gene, spo0J, immediately downstream of htrA, also affects transformation. The htrA and spo0J genes were shown to be both individually transcribed and cotranscribed and probably have a functional connection in competence development. HtrA regulation appears to be finely tuned in S. mutans, since strains containing multiple copies of htrA exhibited abnormal growth phenotypes. Collectively, the results reveal HtrA to be an integral component of the regulatory network connecting cellular growth, stress tolerance, biofilm formation, and competence development and reveal a novel role for the spo0J gene in genetic transformation.  相似文献   

20.
Belowground biological interactions that occur among plant roots, microorganisms and animals are dynamic and substantially influence ecosystem processes. Among these interactions, the ectomycorrhizal (ECM) symbiosis is remarkable but unfortunately these associations have mainly been considered within the rather narrow perspective of their effects on the uptake of dissolved mineral nutrients by individual plants. More recent research has placed emphasis on a wider, multifunctional perspective, including the effects of ectomycorrhizal symbiosis on plant and microbial communities, and on ecosystem processes. This includes mobilization of N and P from organic polymers, release of nutrients from mineral particles or rock surfaces via weathering, effects on carbon cycling, interactions with mycoheterotrophic plants, mediation of plant responses to stress factors such as drought, soil acidification, toxic metals, and plant pathogens, rehabilitation and regeneration of degraded forest ecosystems, as well as a range of possible interactions with groups of other soil microorganisms. Ectomycorrhizas are almost invariably characterized by a Hartig net composed of highly branched hyphae which entirely surround the outer root cortical cells. The Hartig net is the place of massive bidirectional exchanges of nutrients between the host and the fungus. Through these branched hyphae ectomycorrhizal fungi connect their plant hosts to the heterogeneously distributed nutrients required for their growth, enabling the flow of energy-rich compounds required for nutrient mobilization whilst simultaneously providing conduits for the translocation of mobilized products back to their hosts. In addition to increasing the nutrient absorptive surface area of their host plant root systems, the extraradical mycelium of ectomycorrhizal fungi provides a direct pathway for translocation of photosynthetically derived carbon from their hosts to microsites in the soil and a large surface area for interaction with other soil micro-organisms. The detailed functioning and regulation of these mycorrhizosphere processes is still poorly understood and needs detailed molecular approach to study these mycorrhizosphere processes but recent progress in ectomycorrhizal associations is reviewed and potential benefits of improved understanding of mycorrhizosphere interactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号