首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the role of sphingosine kinase 1 (SphK1) in insulin secretion, we used stable transfection to knock down the expression of the Sphk1 gene in the rat insulinoma INS-1 832/13 cell line. Cell lines with lowered Sphk1 mRNA expression and SphK1 enzyme activity (SK11 and SK14) exhibited lowered glucose- and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine-stimulated insulin release and low insulin content associated with decreases in the mRNA of the insulin 1 gene. Overexpression of the rat or human Sphk1 cDNA restored insulin secretion and total insulin content in the SK11 cell line, but not in the SK14 cell line. The Sphk1 cDNA-transfected SK14 cell line expressed significantly less SphK1 activity than the Sphk1 cDNA-transfected SK11 cells suggesting that the shRNA targeting SK14 was more effective in silencing the exogenous rat Sphk1 mRNA. The results indicate that SphK1 activity is important for insulin synthesis and secretion.  相似文献   

2.
Oxidation of glucose and the contents of free amino acids were measured in β-cell-rich pancreatic islets exposed to stereoisomers of the non-metabolizable leucine analogue 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid. The insulin-releasing isomer b(−) appeared to stimulate glucose oxidation, whereas the inactive b(+) form was without effect. 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid reduced the islet contents of aspartic acid, γ-aminobutyric acid and glutamic acid and increased that of phenylalanine. Since the two isomers of 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid did not differ in their ability to alter the intracellular contents of free amino acids, these alterations are probably not significant for the regulation of insulin release. It could not be excluded that increased glucose metabolism may contribute to the stimulation of insulin release by the b(−) isomer of 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid.  相似文献   

3.
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5′-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1−/−). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1−/− islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states.  相似文献   

4.
We hypothesized that contrasting leucine with its non-metabolizable analog 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) might provide new information about metabolic pathways involved in insulin secretion. Both compounds stimulate insulin secretion by allosterically activating glutamate dehydrogenase, which enhances glutamate metabolism. However, we found that leucine was a stronger secretagogue in rat pancreatic islets and INS-1 cells. This suggested that leucine's metabolism contributed to its insulinotropism. Indeed, we found that leucine increased acetoacetate and was metabolized to CO(2) in pancreatic islets and increased short chain acyl-CoAs (SC-CoAs) in INS-1 cells. We then used the leucine-BCH difference to study the hypothesis that acyl groups derived from secretagogue carbon can be transferred as acetoacetate, in addition to citrate, from mitochondria to the cytosol where they can be converted to SC-CoAs. Since BCH cannot form sufficient acetoacetate from glutamate, transport of any glutamate-derived acyl groups to the cytosol in BCH-stimulated cells must proceed mainly via citrate. In ATP citrate lyase-deficient INS-1 cells, which are unable to convert citrate into cytosolic acetyl-CoA, insulin release by BCH was decreased and adding beta-hydroxybutyrate or alpha-ketoisocaproate, which increases mitochondrial acetoacetate, normalized BCH-induced insulin release. This strengthens the concept that acetoacetate-transferred acyl carbon can be converted to cytosolic SC-CoAs to stimulate insulin secretion.  相似文献   

5.
In islet beta-cells and INS-1 cells both the high activity of malic enzyme and the correlation of insulin secretion rates with pyruvate carboxylase (PC) flux suggest that a pyruvate-malate cycle is functionally relevant to insulin secretion. Expression of the malic enzyme isoforms in INS-1 cells and rat islets was measured, and small interfering RNA was used to selectively reduce isoform mRNA expression in INS-1 cells to evaluate its impact on insulin secretion. The cytosolic NADP(+)-specific isoform (ME1) was the most abundant, with the mitochondrial isoforms NAD(+)-preferred (ME2) expressed at approximately 50%, and the NADP(+)-specific (ME3) at approximately 10% compared with ME1. Selective reduction (89 +/- 2%) of cytosolic ME1 mRNA expression and enzyme activity significantly reduced glucose (15 mM:41 +/- 6%, p < 0.01) and amino acid (4 mM glutamine +/- 10 mM leucine: 39 +/- 6%, p < 0.01)-stimulated insulin secretion. Selective small interfering RNA reduction (51 +/- 6%) of mitochondrial ME2 mRNA expression did not impact glucose-induced insulin secretion, but decreased amino acid-stimulated insulin secretion by 25 +/- 4% (p < 0.01). Modeling of the metabolism of [U-(13)C]glucose by its isotopic distribution in glutamate indicates a second pool of pyruvate distinct from glycolytically derived pyruvate in INS-1 cells. ME1 knockdown decreased flux of both pools of pyruvate through PC. In contrast, ME2 knockdown affected only PC flux of the pyruvate derived from glutamate metabolism. These results suggest a physiological basis for two metabolically and functionally distinct pyruvate cycles. The cycling of pyruvate by ME1 generates cytosolic NADPH, whereas mitochondrial ME2 responds to elevated amino acids and serves to supply sufficient pyruvate for increased Krebs cycle flux when glucose is limiting.  相似文献   

6.
Leucine and glutamine were used to elicit biphasic insulin release in rat pancreatic islets. Leucine did not mimic the full biphasic response of glucose. Glutamine was without effect. However, the combination of the two did mimic the biphasic response. When the ATP-sensitive K+ (KATP) channel-independent pathway was studied in the presence of diazoxide and KCl, leucine and its nonmetabolizable analog 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) both stimulated insulin secretion to a greater extent than glucose. Glutamine and dimethyl glutamate had no effect. Because the only known action of BCH is stimulation of glutamate dehydrogenase, this is sufficient to develop the full effect of the KATP channel-independent pathway. Glucose, leucine, and BCH had no effect on intracellular citrate levels. Leucine and BCH both decreased glutamate levels, whereas glucose was without effect. Glucose and leucine decreased palmitate oxidation and increased esterification. Strikingly, BCH had no effect on palmitate oxidation or esterification. Thus BCH activates the KATP channel-independent pathway of glucose signaling without raising citrate levels, without decreasing fatty acid oxidation, and without mimicking the effects of glucose and leucine on esterification. The results indicate that increased flux through the TCA cycle is sufficient to activate the KATP channel-independent pathway.  相似文献   

7.
The transport of glycine and L-lysine into murine P388 leukemia cells has been examined. Glycine transport appears to be shared by both systems A and ASC in P388 cells. Glycine transport is Na+-dependent and is effectively blocked by alpha-(methylamino)isobutyric acid, threonine and alanine but only a marginal reduction in transport is seen with 100-fold excess cold 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. System gly is not expressed in P388 cells. Lysine is largely transported by a Na+-independent, pH-insensitive system with a Km of 0.079 mM. Lysine transport is relatively unaffected by the addition of 100-fold excess cold alpha-(methylamino)isobutyric acid, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid and the anionic amino acids, L-glutamate and L-aspartate. A partial inhibition of lysine transport was observed with L-threonine and L-leucine while L-arginine and L-histidine radically decreased lysine transport. Lysine appears to be transported by a system similar to the system y+ seen in cultured human fibroblasts, Ehrlich ascites cells, and hepatoma cell lines.  相似文献   

8.
Anaplerosis, the synthesis of citric acid cycle intermediates, by pancreatic beta cell mitochondria has been proposed to be as important for insulin secretion as mitochondrial energy production. However, studies designed to lower the rate of anaplerosis in the beta cell have been inconclusive. To test the hypothesis that anaplerosis is important for insulin secretion, we lowered the activity of pyruvate carboxylase (PC), the major enzyme of anaplerosis in the beta cell. Stable transfection of short hairpin RNA was used to generate a number of INS-1 832/13-derived cell lines with various levels of PC enzyme activity that retained normal levels of control enzymes, insulin content, and glucose oxidation. Glucose-induced insulin release was decreased in proportion to the decrease in PC activity. Insulin release in response to pyruvate alone, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine, or methyl succinate plus beta-hydroxybutyrate was also decreased in the PC knockdown cells. Consistent with a block at PC, the most PC-deficient cells showed a metabolic crossover point at PC with increased basal and/or glucose-stimulated pyruvate plus lactate and decreased malate and citrate. In addition, in BCH plus glutamine-stimulated PC knockdown cells, pyruvate plus lactate was increased, whereas citrate was severely decreased, and malate and aspartate were slightly decreased. The incorporation of 14C into lipid from [U-14C]glucose was decreased in the PC knockdown cells. The results confirm the central importance of PC and anaplerosis to generate metabolites from glucose that support insulin secretion and even suggest PC is important for insulin secretion stimulated by noncarbohydrate insulin secretagogues.  相似文献   

9.
Abstract— The intraperitoneal administration of 1-aminocyclopentane carboxylic acid, 1-aminocyclohex-ane carboxylic acid, l-aminocycloheptane carboxylic acid, 1-aminocyclooctane carboxylic acid, exo-2-aminobicyclo(2,2. l)heptane-2-carboxylic acid. endo-2-aminobicyclo(2,2.1)heptane-2-carboxylic acid. 2-aminobicyclo(2.2.2)octane-2-carboxylic acid and 2-aminobicyclo(3,2.l)octane-2-carboxylic acid to 18-day-old male rats selectively perturbed the levels of neutral amino acids in the cerebral cortex. While the effect of the above compounds was rather diversified and usually resulted in a reduction of amino acid levels. marked elevations of the levels of valine and isoleucine were also noted. 1-Aminocycloheptane and cyclooctane carboxylic acids were particularly noteworthy, in that they elicited a marked reduction of the levels of cortical phenylalanine.  相似文献   

10.
The transport of 2-aminoisobutyric acid (AIB) into liver tissue was increased by both insulin and glucagon. We have now shown that these hormones do not stimulate the same transport system. Glucagon, possibly via cAMP, increased the hepatic uptake of AIB by a mechanism which resembled system A. This glucagon-sensitive system could be monitored by the use of the model amino acid MeAIB. In contrast, the insulin-stimulated system exhibited little or no affinity for MeAIB and will be referred to as system B. On the basis of other reports that the hepatic transport of AIB is almost entirely Na+ dependent and the present finding that the uptake of 2-aminobicyclo [2,2,1] heptane-2-carboxylic acid (BCH) was not stimulated by either hormone, we conclude that system B is Na+ dependent. Furthermore, insulin added to the perfusate of livers from glucagon-pretreated donors suppressed the increase in AIB or MeAIB uptake. Depending upon the specificities of systems A and B, both of which are unknown for liver tissue, the insulin/glucagon ratio may alter the composition of the intracellular pool of amino acids.  相似文献   

11.
Despite interest in malic enzyme(ME)s in insulin cells, mitochondrial malic enzyme (ME2) has only been studied with estimates of mRNA or with mRNA knockdown. Because an mRNA’s level does not necessarily reflect the level of its cognate enzyme, we designed a simple spectrophotometric enzyme assay to measure ME2 activity of insulin cells by utilizing the distinct kinetic properties of ME2. Mitochondrial ME2 uses either NAD or NADP as a cofactor, has a high Km for malate and is allosterically activated by fumarate and inhibited by ATP. Cytosolic ME (ME1) and the other mitochondrial ME (ME3) use only NADP as a cofactor and have lower Kms for malate. The assay easily showed for the first time that substantial ME2 activity is present in pancreatic islets of humans, rats and mice and INS-1 832/13 cells. ME2’s presence was confirmed with immunoblotting. There was no evidence that ME3 is present in these tissues.  相似文献   

12.
In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.  相似文献   

13.
In pancreatic beta-cells, metabolic coupling factors generated during glucose metabolism and pyruvate cycling through anaplerosis/cataplerosis processes contribute to the regulation of insulin secretion. Pyruvate/citrate cycling across the mitochondrial membrane leads to the production of malonyl-CoA and NADPH, two candidate coupling factors. To examine the implication of pyruvate/citrate cycling in glucose-induced insulin secretion (GIIS), different steps of the cycle were inhibited in INS 832/13 cells by pharmacological inhibitors and/or RNA interference (RNAi) technology: mitochondrial citrate export, ATP-citrate lyase (ACL), and cytosolic malic enzyme (ME1). The inhibitors of the di- and tri-carboxylate carriers, n-butylmalonate and 1,2,3-benzenetricarboxylate, respectively, reduced GIIS, indicating the importance of transmitochondrial transport of tri- and dicarboxylates in the action of glucose. To directly test the role of ACL and ME1 in GIIS, small hairpin RNA (shRNA) were used to selectively decrease ACL or ME1 expression in transfected INS 832/13 cells. shRNA-ACL reduced ACL protein levels by 67%, and this was accompanied by a reduction in GIIS. The amplification/K(ATP)-independent pathway of GIIS was affected by RNAi knockdown of ACL. The ACL inhibitor radicicol also curtailed GIIS. shRNA-ME1 reduced ME1 activity by 62% and decreased GIIS. RNAi suppression of either ACL or ME1 did not affect glucose oxidation. However, because ACL is required for malonyl-CoA formation, inhibition of ACL expression by shRNA-ACL decreased glucose incorporation into palmitate and increased fatty acid oxidation in INS 832/13 cells. Taken together, the results underscore the importance of pyruvate/citrate cycling in pancreatic beta-cell metabolic signaling and the regulation of GIIS.  相似文献   

14.
The nonmetabolized analogue of L-leucine, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH), was recently found to inhibit O2 uptake and insulin release from tumoral islet cells of the RINm5F line. BCH inhibited lipogenesis, stimulated lipolysis, and severely decreased the oxidation of endogenous [U-14C]palmitate in prelabelled RINm5F cells. D-Glucose exerted metabolic effects which were sometimes opposite to those caused by BCH and, within limits, protected the islet cells against the inhibitor action of BCH. Since BCH augments NH4+ production and facilitated the catabolism of 14C-labelled amino acids in the prelabelled cells, it is proposed that the unexpected inhibition of O2 uptake by BCH is mainly attributable to a decrease in the oxidation of endogenous fatty acids.  相似文献   

15.
We have previously reported that pancreatic islet β-cells and clonal HIT insulinoma cells express an ATP-stimulatable Ca2+-independent phospholipase A2 (ASCI-PLA2) enzyme and that activation of this enzyme appears to participate in glucose-stimulated insulin secretion. To further examine this hypothesis, glucose-responsitivity and expression of ASCI-PLA2 activity in various insulinoma cell lines were examined. Secretagogue-stimulated insulin secretion was observed with βTC6-f7 and early passage (EP)-βTC6 cells. In contrast, RIN-m5f, βTC3, and late passage (LP)-βTC6 cells exhibited little secretagogue-induced secretion. A haloenollactone suicide substrate (HELSS) which inhibits ASCI-PLA2 activity ablated secretagogue-induced insulin secretion from βTC6-f7 and EP-βTC6 cells. All insulinoma cell lines studied expressed both cytosolic and membrane-associated Ca2+-independent PLA2 activities which were inhibited by HELSS. The cytosolic enzymatic activity in the glucose-responsive βTC6-f7 and EP-βTC6 cells was activated by ATP and protected against thermal denaturation by ATP, but this was not the case in the glucose-unresponsive RIN-m5f, βTC3, or LP-βTC6 cells. Comparison of the distribution of Ca2+-independent PLA2 activity revealed that membrane-associated activity was higher than cytosolic activity in βTC6-f7 and EP-βTC6 cells but not in RIN-m5f, βTC3, or LP-βTC6 cells. Insensitivity of cytosolic activity to ATP may prevent association of the PLA2 activity with membrane substrates and contribute to attenuated glucose-responsitivity in the RIN-m5f, βTC3, or LP-βTC6 cells. HIT insulinoma cells were also found to undergo a decline in both glucose-responsitivity and membrane-associated Ca2+-independent PLA2 activity upon serial passage in culture, and this was associated with a reduction in membrane content of arachidonate-containing phospholipids. These and previous results suggest that the ATP-stimulatable PLA2 enzyme may participate in glucose-induced insulin secretion.  相似文献   

16.
17.
Glutamine and glutamate transport activities were measuredin isolated luminal and abluminal plasma membrane vesiclesderived from bovine brain endothelial cells. Facilitativesystems for glutamine and glutamate were almost exclusivelylocated in luminal-enriched membranes. The facilitativeglutamine carrier was neither sensitive to2-aminobicyclo(2,2,1)heptane-2-carboxylic acid inhibition nor did itparticipate in accelerated amino acid exchange; it therefore appearedto be distinct from the neutral amino acid transport system L1. TwoNa-dependent glutamine transporters were found in abluminal-enrichedmembranes: systems A and N. System N accounted for ~80% ofNa-dependent glutamine transport at 100 µM. Abluminal-enriched membranes showed Na-dependent glutamate transport activity. The presence of 1) Na-dependent carrierscapable of pumping glutamine and glutamate from brain into endothelialcells, 2) glutaminase withinendothelial cells to hydrolyze glutamine to glutamate and ammonia, and3) facilitative carriers forglutamine and glutamate at the luminal membrane may provide a mechanismfor removing nitrogen and nitrogen-rich amino acids from brain.

  相似文献   

18.
The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi.  相似文献   

19.
Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α–ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD+ from NADP+ and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP+ levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.  相似文献   

20.
Malic enzyme (ME; NADP+-dependent; EC 1.1.40) provides NADPH for lipid biosynthesis in oleaginous microorganisms. Its role in vivo depends on there being an adequate supply of NADH to drive malate dehydrogenase to convert oxaloacetate to malate as a component of a cycle of three reactions: pyruvate → oxaloacetate → malate and, by the action of ME, back to pyruvate. However, the availability of cytosolic NADH is limited and, consequently, ancillary means of producing NADPH are necessary. Stoichiometries are given for the conversion of glucose to triacylglycerols involving ME with and without the reactions of the pentose phosphate pathway (PPP) as an additional source of NADPH. Some oleaginous microorganisms (such as Yarrowia lipolytica), however, lack a cytosolic ME and, if the PPP is the sole provider of NADPH, the theoretical yield of triacylglycerol from glucose falls to 27.6 % (w/w) from 31.6 % when ME is present. An alternative route for NADPH generation via a cytosolic isocitrate dehydrogenase (NADP+-dependent) is then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号