首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.  相似文献   

2.
3.
Abstract: Thrombin is one of the first regulatory molecules present at sites of CNS trauma or injury. Exposure of neuronal and glial cells to thrombin produces potent morphological as well as cytoprotective and cytotoxic effects, but little is known about how this important modulator affects neurotransmitter signaling. In astrocyte cultures that have been morphologically differentiated by exposure to transforming growth factor-α, addition of thrombin induced a retraction of astrocytic processes and suppressed the stimulation of phosphoinositide hydrolysis by the selective metabotropic glutamate receptor (mGluR) agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid. In addition to the suppression of phosphoinositide hydrolysis, thrombin treatment produced a corresponding reduction in level of mGluR5 mRNA as demonstrated with ribonuclease protection assay and reduced content of mGluR5 receptor protein as seen with western blotting. In contrast, thrombin exposure up-regulated astrocyte β-actin mRNA levels. A synthetic hexapeptide with a sequence corresponding to the amino-terminus of the thrombin receptor's tethered ligand also mimicked the ability of thrombin to suppress mGluR5 levels and to increase β-actin mRNA content, suggesting that these effects of thrombin are mediated by proteolytically activated cell surface thrombin receptors. Thrombin's suppressive effect on mGluR5 was resistant to pretreatment with pertussis toxin or various protein kinase and protein phosphatase inhibitors. However, the serine/threonine protein kinase inhibitor H-7 did prevent thrombin-induced reversal of astrocyte stellation and induction of β-actin mRNA levels, indicating that these effects of thrombin involve a signaling pathway distinct from the one that mediates the suppressive effects of thrombin on mGluR5.  相似文献   

4.
The metabotropic glutamate receptor type 7 (mGluR7) is the predominant group III mGluR in the presynaptic active zone, where it serves as an autoreceptor to inhibit neurotransmitter release. Our previous studies show that PKC phosphorylation of mGluR7 on Ser-862 is a key mechanism controlling constitutive and activity-dependent surface expression of mGluR7 by regulating a competitive interaction of calmodulin and protein interacting with C kinase (PICK1). As receptor phosphorylation and dephosphorylation are tightly coordinated through the precise action of protein kinases and phosphatases, dephosphorylation by phosphatases is likely to play an active role in governing the activity-dependent or agonist-induced changes in mGluR7 receptor surface expression. In the present study, we find that the serine/threonine protein phosphatase 1 (PP1) has a crucial role in the constitutive and agonist-induced dephosphorylation of Ser-862 on mGluR7. Treatment of neurons with PP1 inhibitors leads to a robust increase in Ser-862 phosphorylation and increased surface expression of mGluR7. In addition, Ser-862 phosphorylation of both mGluR7a and mGluR7b is a target of PP1. Interestingly, agonist-induced dephosphorylation of mGluR7 is regulated by PP1, whereas NMDA-mediated activity-induced dephosphorylation is not, illustrating there are multiple signaling pathways that affect receptor phosphorylation and trafficking. Importantly, PP1γ1 regulates agonist-dependent Ser-862 dephosphorylation and surface expression of mGluR7.  相似文献   

5.
Group I metabotropic glutamate receptors (mGluRs) are coupled via phospholipase Cβ to the hydrolysis of phosphoinositides and function to modulate neuronal excitability and synaptic transmission at glutamatergic synapses. The desensitization of Group I mGluR signaling is thought to be mediated primarily via second messenger-dependent protein kinases and G protein-coupled receptor kinases. We show here that both mGluR1 and mGluR5 interact with the calcineurin inhibitor protein (CAIN). CAIN is co-immunoprecipitated in a complex with Group I mGluRs from both HEK 293 cells and mouse cortical brain lysates. Purified CAIN and its C-terminal domain specifically interact with glutathione S-transferase fusion proteins corresponding to the second intracellular loop and the distal C-terminal tail domains of mGluR1. The interaction of CAIN with mGluR1 could also be blocked using a Tat-tagged peptide corresponding to the mGluR1 second intracellular loop domain. Overexpression of full-length CAIN attenuates the agonist-stimulated endocytosis of both mGluR1a and mGluR5a in HEK 293 cells, but expression of the CAIN C-terminal domain does not alter mGluR5a internalization. In contrast, overexpression of either full-length CAIN or the CAIN C-terminal domain impairs agonist-stimulated inositol phosphate formation in HEK 293 cells expressing mGluR1a. This CAIN-mediated antagonism of mGluR1a signaling appears to involve the disruption of receptor-Gαq/11 complexes. Taken together, these observations suggest that the association of CAIN with intracellular domains involved in mGluR/G protein coupling provides an additional mechanism by which Group I mGluR endocytosis and signaling are regulated.Metabotropic glutamate receptors (mGluRs)2 play an essential role in regulating neuronal plasticity, development, and neurotoxicity and belong to the G protein-coupled receptor superfamily of integral membrane proteins (14). The mGluR family can be subclassified into three groups based on sequence homology, G protein specificity, and pharmacology. Group I mGluRs (mGluR1 and mGluR5) couple via the heterotrimeric Gαq/11 proteins to the activation of phospholipase Cβ, resulting in the formation of inositol 1,4,5-triphosphate and diacylglycerol, the release of Ca2+ from intracellular stores, and the activation of protein kinase C (PKC) (46).The regulation of mGluR signal transduction involves numerous proteins that function to regulate signaling at both the level of the heterotrimeric G protein and the receptor (68). At the level of the receptor, Group I mGluR activity is regulated by a process termed desensitization, which protects against both acute and chronic receptor overstimulation (9, 10). The attenuation of Group I mGluR signaling can be mediated by both phosphorylation-dependent and phosphorylation-independent processes (11). The phosphorylation-independent attenuation of Group I mGluR signaling is mediated by GRK2 (G protein-coupled receptor kinase 2), which is composed of three functional domains: an N-terminal RGS (regulator of G protein signaling) homology domain, a central catalytic domain, and a C-terminal Gβγ-binding pleckstrin homology domain (12). GRK2-mediated desensitization of Group I mGluRs does not require catalytic activity but rather requires the interaction of the GRK2 RGS homology domain with both the second intracellular loop domain of mGluR1 and the α-subunit of Gαq/11, thereby attenuating heterotrimeric G protein coupling (1315). Phosphorylation-independent desensitization of mGluR1 signaling is also mediated by optineurin, an effect that is enhanced by the expression of mutant huntingtin (16). Phosphorylation-dependent desensitization of Group I mGluR responsiveness involves the phosphorylation of PKC consensus sequence localized within the intracellular loop and C-terminal tail domains of mGluR1 and mGluR5 by PKC (17, 18). It is proposed that calcineurin and mGluR5 may exist in a signaling complex in the brain and that calcineurin may function to modulate mGluR5 signaling by directly dephosphorylating the receptor at a PKC consensus site that contributes to mGluR5 desensitization (19). Calcineurin is also linked to the regulation of endocytosis via its interaction with dynamin-1 (20).On the basis of the observation that calcineurin may form a complex with Group I mGluRs, we hypothesized that CAIN (calcineurin inhibitor protein) might also interact with Group I mGluRs and modulate their endocytosis and signaling. CAIN, also known as Cabin1 (calcineurin-binding protein), was first identified as a protein that binds to calcineurin and was shown to inhibit calcineurin catalytic activity (2123). Previous studies also demonstrated that CAIN may interact with amphiphysin-1, dynamin-1, and α-adaptin and led to the suggestion that CAIN functions as a component of synaptic endocytic complexes (24). Consistent with this hypothesis, the overexpression of CAIN in human embryonic kidney (HEK 293) cells resulted in attenuated transferrin receptor endocytosis.We show here that CAIN interacts with the second intracellular loop and C-terminal tail domains of Group I mGluRs, inhibits Group I mGluR internalization, and attenuates mGluR1a signaling by disrupting receptor-Gαq/11 complexes. Taken together, these results describe an additional mechanism by which Group I mGluR activity may be regulated.  相似文献   

6.
Abstract: The metabotropic glutamate receptor mGluR5, but not the closely related mGluR1, is expressed in cultured astrocytes, and this expression is up-regulated by specific growth factors. We investigated the capability and underlying mechanisms of mGluR5 to induce oscillatory responses of intracellular calcium concentration ([Ca2+]i) in cultured rat astrocytes. Single-cell [Ca2+]i recordings indicated that an mGluR-selective agonist, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate (1 S ,3 R -ACPD), elicits [Ca2+]i oscillations in good agreement with the growth factor-induced up-regulation of mGluR5 in cultured astrocytes. A protein kinase C (PKC) inhibitor, bisindolylmaleimide I, converted a 1 S ,3 R -ACPD-mediated oscillatory response into a nonoscillatory response. In addition, the PKC activator phorbol 12-myristate 13-acetate completely abolished the [Ca2+]i increase. These and other pharmacological properties of 1 S ,3 R -ACPD-induced [Ca2+]i oscillations correlate well with those of the cloned mGluR5 characterized in heterologous expression systems. Furthermore, the potential involvement of protein phosphatases in [Ca2+]i oscillations is suggested. The present study demonstrates that mGluR5 is capable of inducing [Ca2+]i oscillations in cultured astrocytes and that phosphorylation/dephosphorylation of mGluR5 is critical in [Ca2+]i oscillations, analogous to the cloned mGluR5 expressed in heterologous cell lines.  相似文献   

7.
Abstract: The metabotropic glutamate receptor (mGluR) subtype 1 exists as at least three variants (−1a, −1b, and −1c) generated by alternative splicing at the C-terminal domain. Fluorometric Ca2+ measurements were used to compare the concentration dependency of agonist-induced rises in intracellular free Ca2+ concentration ([Ca2+]i) in human embryonic HEK 293 cells transiently expressing rat mGluR1a, mGluR1b, or mGluR1c. The rank order of agonist potencies was quisqualate ≫ (2 S, 1' S, 2' S )-2-(carboxycyclopropyl)glycine (L-CCG-I) > (1 S, 3 R )-1-aminocyclopentane-1,3-dicarboxylic acid [(1 S, 3 R )-ACPD] and did not differ among the splice variants. However, agonists were consistently more potent at mGluR1a than at mGluR1c and mGluR1b. In the same system, we characterized the agonist pharmacology of two chimeric rat mGluR3/1 receptors where the first and/or the second intracellular loop(s) and the C-terminal domain were exchanged with the corresponding mGluR1a or mGluR1c sequences and that were previously shown to mediate elevations in [Ca2+]i in response to agonists. The potency of agonists was higher at the chimera having the C-terminus of mGluR1a as compared with those having the mGluR1c C-terminus. Both chimeric mGluR3/1 receptors had the same rank order of agonist potencies: L-CCG-I ≫ (1 S, 3 R )-ACPD ∼ quisqualate. These data support the hypothesis that the C-terminal domain of mGluRs plays a role in determining the potency of agonists for inducing mGluR-mediated functional responses.  相似文献   

8.
Abstract: Metabotropic glutamate receptors (mGluRs) in the CNS are coupled to a variety of second messenger systems, the best characterized of which is activation of phosphoinositide hydrolysis. Recently, we found that activation of mGluRs in rat brain slices by the selective mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (1 S ,3 R -ACPD) potentiates cyclic AMP (cAMP) responses elicited by activation of other receptors coupled to Gs. It has been suggested that mGluR-mediated potentiation of cAMP responses is secondary to activation of phosphoinositide hydrolysis. However, preliminary evidence suggests that this is not the case. Therefore, we designed a series of experiments to test more fully the hypothesis that mGluR-mediated potentiation of cAMP responses is secondary to phosphoinositide hydrolysis. Inhibitors of both protein kinase C and intracellular calcium mobilization failed to antagonize 1 S ,3 R -ACPD-stimulated potentiation of cAMP responses. Further, coapplication of phorbol esters and 1 S ,3 R -ACPD induced a cAMP response that was greater than additive. Finally, ( RS )-3,5-dihydroxyphenylglycine, a selective agonist of mGluRs coupled to phosphoinositide hydrolysis, failed to potentiate cAMP responses, whereas (2 S ,1' R ,2' R ,3' R )-2-(2,3-dicarboxycyclopropyl)glycine, an mGluR agonist that does not activate mGluRs coupled to phosphoinositide hydrolysis, elicited a robust potentiation of cAMP responses. In total, these data strongly suggest that mGluR-mediated potentiation of cAMP responses is not secondary to activation of phosphoinositide hydrolysis and is likely mediated by a group II mGluR.  相似文献   

9.
10.
Abstract: Several G protein-coupled receptors have been shown to be palmitoylated, and for some of these receptors the covalent attachment of palmitate has been implicated in the regulation of receptor-G protein coupling. The metabotropic glutamate receptor (mGluR) family forms a distinct group of G protein-coupled receptors, and the possibility that these may also be palmitoylated has been examined. Clonal baby hamster kidney (BHK) cells permanently transfected with the mGluR4 and mGluR1α subtypes were labelled with [3H]palmitic acid. The cells were lysed, the receptors were immuno-precipitated with specific antipeptide antibodies, and the immunoprecipitates were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. The palmitoylated, endogenously expressed G protein α-subunit αq could be immunoprecipitated from [3H]palmitate-labelled BHK cells expressing mGluR1α using a specific antipeptide antibody, but in the same cell lysates no detectable [3H]palmitate-labelled mGluR1α was found. This suggests that this mGluR subtype, associated with stimulation of phospholipase C, is not palmitoylated. In contrast, mGluR4, which is coupled to inhibition of adenylyl cyclase, was found to be labelled with [3H]palmitic acid, and the palmitate was quantitatively removed by treatment with 1 M hydroxylamine, suggesting attachment of the palmitate through a thioester bond. Stimulation with maximal doses of the neurotransmitter glutamate for 1, 5, or 10 min appeared to have no effect on the level of receptor palmitoylation.  相似文献   

11.
Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic mGluRs was measured by recording spontaneous and evoked Ca2+ elevations in both astrocytic somata and processes. An exogenous astrocytic Gq G protein-coupled receptor was resistant to scaling, suggesting that the alterations in astrocyte Ca2+ signaling result from changes in activity of the surface mGluRs rather than a change in intracellular G protein signaling molecules. These findings suggest that astrocytes actively detect shifts in neuronal firing rates and adjust their receptor signaling accordingly. This type of long-term plasticity in astrocytes resembles neuronal homeostatic plasticity and might be important to ensure an optimal or expected level of input from neurons.  相似文献   

12.
Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.  相似文献   

13.
Abstract: The in vivo anticonvulsant effects and in vitro metabo-tropic glutamate receptor selectivity of ( S )-4-carboxy-3-hydroxy-phenylglycine [(S)-4C3HPG] were examined. Intracerebroventricular injection of (S)-4C3HPG dose-dependently antagonized audiogenic-induced clonic and tonic convulsions in DBA/2 mice with ED60 values of 76 and 110-nmol per mouse, respectively. (S)-4C3HPG dose-dependently inhibited the spontaneously evoked epileptic spikes in a cingulate cortex-corpus callosum slice preparation. (SJ-4C3HPG displaced the binding of [3H]glutamate in membranes prepared from baby hamster kidney (BHK) cells expressing the metabotropic glutamate receptor mGluR1a with an EC50 of 5 β 1 u M. ( S )-4C3HPG dose-dependently antagonized glutamate-stimulated phosphoinositide hydrolysis in BHK cells expressing mGluR 1a with an IC50 of 15 β 3 μ M. ( S )-4C3HPG was, however, an agonist at mGluR2 with an EC60 of 21 β 4 μ M for inhibition of forskolin-stimulated cyclic AMP formation in BHK cells expressing the mGluR2. ( S )-4C3HPG had no effects at mGluR4a. These data suggest that the anticonvulsant action of ( S )-4C3HPG is mediated by combined antagonism of mGluRIa and agonism of mGluR2. These results suggest the importance of mGluR1a and/or mGluR2 in the control of epileptic activity.  相似文献   

14.
15.
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections, can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal models. Recent investigations suggest that microglia, the resident immune cells of the brain, provides a link between neurotransmission, immune cell activation, brain inflammation and neuronal dysfunction seen with the offspring. Relatively little is known about how reduction of brain inflammation and restoration of glial function are associated with diminution of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expression and the long-lasting excitotoxic effects of the neurotoxin during brain development are associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR and how they regulate glial function and inflammatory processes in mice prenatally exposed to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychiatric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5 during 5 weeks reduced expression of classic inflammation marker PBR in many brain areas and that this molecular association was not present in LPS-exposed offspring. The post-mortem analysis revealed that the down regulation of PBR was mediated through activation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defective in a mouse model of the psychiatric deficit offering a novel insight of mGluR5 involvement to brain related disorders and PBR related imaging studies. In conclusion, mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR (cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could be associated with neuropsychiatric disorders in offspring.  相似文献   

16.
At synaptic boutons, metabotropic glutamate receptor 7 (mGlu7 receptor) serves as an autoreceptor, inhibiting glutamate release. In this response, mGlu7 receptor triggers pertussis toxin-sensitive G protein activation, reducing presynaptic Ca2+ influx and the subsequent depolarization evoked release. Here we report that receptor coupling to signaling pathways that potentiate release can be seen following prolonged exposure of nerve terminals to the agonist l-(+)-phosphonobutyrate, l-AP4. This novel mGlu7 receptor response involves an increase in the release induced by the Ca2+ ionophore ionomycin, suggesting a mechanism that is independent of Ca2+ channel activity, but dependent on the downstream exocytotic release machinery. The mGlu7 receptor-mediated potentiation resists exposure to pertussis toxin, but is dependent on phospholipase C, and increased phosphatidylinositol (4,5)-bisphosphate hydrolysis. Furthermore, the potentiation of release does not depend on protein kinase C, although it is blocked by the diacylglycerol-binding site antagonist calphostin C. We also found that activation of mGlu7 receptors translocate the active zone protein essential for synaptic vesicle priming, munc13-1, from soluble to particulate fractions. We propose that the mGlu7 receptor can facilitate or inhibit glutamate release through multiple pathways, thereby exerting homeostatic control of presynaptic function.  相似文献   

17.
The uncoupling of metabotropic glutamate receptors (mGluRs) from heterotrimeric G proteins represents an essential feedback mechanism that protects neurons against receptor overstimulation that may ultimately result in damage. The desensitization of mGluR signaling is mediated by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). Unlike mGluR1, the attenuation of mGluR5 signaling in HEK 293 cells is reported to be mediated by a phosphorylation-dependent mechanism. However, the mechanisms regulating mGluR5 signaling and endocytosis in neurons have not been investigated. Here we show that a 2-fold overexpression of GRK2 leads to the attenuation of endogenous mGluR5-mediated inositol phosphate (InsP) formation in striatal neurons and siRNA knockdown of GRK2 expression leads to enhanced mGluR5-mediated InsP formation. Expression of a catalytically inactive GRK2-K220R mutant also effectively attenuates mGluR5 signaling, but the expression of a GRK2-D110A mutant devoid in Gαq/11 binding increases mGluR5 signaling in response to agonist stimulation. Taken together, these results indicate that the attenuation of mGluR5 responses in striatal neurons is phosphorylation-independent. In addition, we find that mGluR5 does not internalize in response to agonist treatment in striatal neuron, but is efficiently internalized in cortical neurons that have higher levels of endogenous GRK2 protein expression. When overexpressed in striatal neurons, GRK2 promotes agonist-stimulated mGluR5 internalization. Moreover, GRK2-mediated promotion of mGluR5 endocytosis does not require GRK2 catalytic activity. Thus, we provide evidence that GRK2 mediates phosphorylation-independent mGluR5 desensitization and internalization in neurons.Glutamate is the major excitatory neurotransmitter in the mammalian brain and functions to activate two distinct classes of receptors (ionotropic and metabotropic) to regulate a variety of physiological functions (13). Ionotropic glutamate receptors, such as NMDA, AMPA, and kainate receptors, are ligand-gated ion channels, whereas metabotropic glutamate receptors (mGluRs)5 are members of the G protein-coupled receptor (GPCR) superfamily (47). mGluRs modulate synaptic activity via the activation of heterotrimeric G proteins that are coupled to a variety of second messenger cascades. Group I mGluRs (mGluR1 and mGluR5) are coupled to the activation of Gαq/11 proteins, which stimulate the activation of phospholipase Cβ1 resulting in diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3) formation, release of Ca2+ from intracellular stores and subsequent activation of protein kinase C.The attenuation of GPCR signaling is mediated in part by G protein-coupled receptor kinases (GRKs), which phosphorylate GPCRs to promote the binding of β-arrestin proteins that uncouple GPCRs from heterotrimeric G proteins (810). GRK2 has been demonstrated to contribute to the phosphorylation and desensitization of both mGluR1 and mGluR5 in human embryonic kidney (HEK 293) cells (1117). GRK4 is also implicated in mediating the desensitization of mGluR1 signaling in cerebellar Purkinje cells, but does not contribute to the desensitization of mGluR5 (14, 15). In addition, GRK4 plays a major role in mGluR1 internalization (13, 14). A role for GRK2 in promoting mGluR1 internalization is less clear as different laboratories have obtained discordant results (11, 14, 15, 16). However, the only study examining the role of GRK2 in regulating mGluR1 endocytosis in a native system reported that GRK2 knockdown had no effect upon mGluR1 internalization in cerebellar Purkinje cells (14).GRK2 is composed of three functional domains: an N-terminal regulator of G protein signaling (RGS) homology (RH) domain, a central catalytic domain, and a C-terminal Gβγ binding pleckstrin homology domain (18). In HEK 293 cells, mGluR1 desensitization is not dependent on GRK2 catalytic activity. Rather the GRK2 RH domain interacts with both the second intracellular loop domain of mGluR1 and the α-subunit of Gαq/11 and attenuates second messenger responses by disrupting the mGluR1/Gαq/11 signaling complexes (12, 1921). Although the molecular mechanism underlying GRK2-mediated attenuation of mGluR1 signaling is relatively well established in HEK 293 cells, the role of GRK2 in regulating the desensitization of mGluRs in neurons remains to be determined. Moreover, it is not known whether GRK2-dependent attenuation of mGluR5 signaling is mediated by the same phosphorylation-independent mechanism that has been described for mGluR1. In a previous study, GRK2-mediated mGluR5 desensitization was reported to be phosphorylation-dependent, based on the observation that the overexpression of a catalytically inactive GRK2 (K220R) did not attenuate mGluR5 signaling (15). In the present study, we examined whether a 2-fold overexpression of GRK2 in primary mouse striatal neurons to match GRK2 expression levels found in the cortex results in increased agonist-stimulated desensitization and internalization of endogenous mGluR5. We report here that GRK2 mediates phosphorylation-independent mGluR5 desensitization and internalization. Furthermore, GRK2 knockdown causes an increase in mGluR5 signaling, demonstrating that endogenous GRK2 plays a role in mGluR5 desensitization.  相似文献   

18.
Abstract: Metabotropic glutamate receptors mediate their intracellular response by coupling to G proteins and may be divided into three subfamilies: mGluR1 and mGluR5, which stimulate phosphatidylinositol hydrolysis; mGluR2 and mGluR3, which are negatively coupled to cyclic AMP formation; and mGluR4 and mGluR6, which also inhibit forskolin-stimulated cyclic AMP formation. The mGluR4 subtypes may represent l -2-amino-4-phosphonobutyrate-sensitive presynaptic autoreceptors, and two alternatively spliced variants of the mGluR4 coding for two receptors with different C termini have been identified. Using in situ hybridization, we measured the levels of mGluR1–mGluR5 mRNA in regions of the rat brain 24 h after transient global ischemia, a time point when no neuronal damage can yet be observed morphologically. In the hippocampus, the mRNA levels for mGluR1, mGluR2, and mGluR5 were decreased, mGluR3 mRNA levels were unchanged, and the mGluR4 mRNA levels were strongly increased. The strongest increase appeared to be in the mRNA encoding mGluR4b. The mGluR4 mRNA was also increased in the parietal cortex, whereas the ventral posteromedial thalamic nucleus showed a small decrease in its mRNA content. These results suggest that vulnerable neurons react to an increased extracellular glutamate concentration by differential regulation of the mRNA for pre- and postsynaptically located metabotropic glutamate receptors.  相似文献   

19.
20.
Abstract: To examine the effects of glutamatergic neurotransmission on amyloid processing, we stably expressed the metabotropic glutamate receptor subtype 1α (mGluR1α) in HEK 293 cells. Both glutamate and the selective metabotropic agonist 1-amino-1,3-cyclopentanedicarboxylic acid (ACPD) rapidly increased phosphatidylinositol (PI) turnover four- to fivefold compared with control cells that were transfected with the expression vector alone. Increased PI turnover was effectively blocked by the metabotropic antagonist α-methyl-4-carbophenylglycine (MCPG), indicating that heterologous expression of mGluR1α resulted in efficient coupling of the receptors to G protein and phospholipase C activation. Stimulation of mGluR1α with glutamate, quisqualate, or ACPD rapidly increased secretion of the APP ectodomain (APPs); these effects were blocked by MCPG. The metabotropic receptors were coupled to APP processing by protein kinases and by phospholipase A2 (PLA2), and melittin, a peptide that stimulates PLA2, potently increased APPs secretion. These data indicate that mGluR1α can be involved in the regulation of APP processing. Together with previous findings that muscarinic and serotonergic receptor subtypes can increase the secretion of the APP ectodomain, these observations support the concept that proteolytic processing of APP is under the control of several major neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号