首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs.  相似文献   

2.
Cytoplasmic dynein is a molecular motor complex consisting of four major classes of polypeptide: the catalytic heavy chains (HC), intermediate chains (IC), light intermediate chains (LIC), and light chains (LC). Previous studies have reported that the ICs bind near the N terminus of the HCs, which is thought to correspond to the base of the dynein complex. In this study, we co-overexpressed cytoplasmic dynein subunits in COS-7 cells to map HC binding sites for the ICs and LICs, as well as HC dimerization. We have found that the LICs bind directly to the N terminus of the HC, adjacent to and overlapping with the IC binding site, consistent with a role for the LICs in cargo binding. Mutation of the LIC P-loop had no detectable effect on HC binding. We detected no direct interaction between the ICs and LICs. Using triple overexpression of HC, IC and LIC, we found that both IC and LIC are present in the same complexes, a result verified by anti-IC immunoprecipitation of endogenous complexes and immunoblotting. Our results indicate that the LICs and ICs must be located on independent surfaces of cytoplasmic dynein to allow each to interact with other proteins without steric interference.  相似文献   

3.
The heavy chain of cytoplasmic dynein is required for nuclear migration in Aspergillus nidulans and other fungi. Here we report on a new gene required for nuclear migration, nudG, which encodes a homologue of the “8-kD” cytoplasmic dynein light chain (CDLC). We demonstrate that the temperature sensitive nudG8 mutation inhibits nuclear migration and growth at restrictive temperature. This mutation also inhibits asexual and sexual sporulation, decreases the intracellular concentration of the nudG CDLC protein and causes the cytoplasmic dynein heavy chain to be absent from the mycelial tip, where it is normally located in wild-type mycelia. Coimmunoprecipitation experiments with antibodies against the cytoplasmic dynein heavy chain (CDHC) and the nudG CDLC demonstrated that some fraction of the cytoplasmic dynein light chain is in a protein complex with the CDHC. Sucrose gradient sedimentation analysis, however, showed that not all of the NUDG protein is complexed with the heavy chain. A double mutant carrying a cytoplasmic dynein heavy chain deletion plus a temperature-sensitive nudG mutation grew no more slowly at restrictive temperature than a strain with only the CDHC deletion. This result demonstrates that the effect of the nudG mutation on nuclear migration and growth is mediated through an interaction with the CDHC rather than with some other molecule (e.g., myosin-V) with which the 8-kD CDLC might theoretically interact.  相似文献   

4.
Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.  相似文献   

5.
Dyneins across eukaryotes: a comparative genomic analysis   总被引:1,自引:0,他引:1  
Dyneins are large minus-end-directed microtubule motors. Each dynein contains at least one dynein heavy chain (DHC) and a variable number of intermediate chains (IC), light intermediate chains (LIC) and light chains (LC). Here, we used genome sequence data from 24 diverse eukaryotes to assess the distribution of DHCs, ICs, LICs and LCs across Eukaryota. Phylogenetic inference identified nine DHC families (two cytoplasmic and seven axonemal) and six IC families (one cytoplasmic). We confirm that dyneins have been lost from higher plants and show that this is most likely because of a single loss of cytoplasmic dynein 1 from the ancestor of Rhodophyta and Viridiplantae, followed by lineage-specific losses of other families. Independent losses in Entamoeba mean that at least three extant eukaryotic lineages are entirely devoid of dyneins. Cytoplasmic dynein 2 is associated with intraflagellar transport (IFT), but in two chromalveolate organisms, we find an IFT footprint without the retrograde motor. The distribution of one family of outer-arm dyneins accounts for 2-headed or 3-headed outer-arm ultrastructures observed in different organisms. One diatom species builds motile axonemes without any inner-arm dyneins (IAD), and the unexpected conservation of IAD I1 in non-flagellate algae and LC8 (DYNLL1/2) in all lineages reveals a surprising fluidity to dynein function.  相似文献   

6.
Outer-arm dynein purified from trout spermatozoa was disrupted by low-ionic-strength dialysis, and the resulting subunits were separated by sucrose density-gradient centrifugation. The intact 19 S dynein, containing the alpha- an beta-heavy chains, intermediate chains (ICs) 1-5 and light chains (LCs) 1-6, yielded several discrete particles: a 17.5 S adenosine triphosphatase (ATPase) composed of the alpha- and beta-chains ICs 3-5 and LC 1; a 9.5 S complex containing ICs 1 and 2 together with LCs 2, 3, 4, and 6; and a single light chain (LC 5), which sedimented at approximately 4 S. In some experiments, ICs 3-5 also separated from the heavy chain complex and were obtained as a distinct subunit. Further dissociation of the 17.5 S particle yielded a 13.1 S ATPase that contained the beta-heavy chain and ICs 3-5. The polypeptide compositions of the complexes provide new information on the intermolecular associations that occur within dynein. Substructural features of the trout dynein polypeptides also were examined. The heavy chains were subjected to vanadate-mediated photolysis at the V1 sites by irradiation at 365 nm in the presence of Mg2+, ATP, and vanadate. Fragment pairs of relative molecular mass (Mr) 245,000/185,000 and 245,000/170,000 were obtained from the alpha- and beta-heavy chains, respectively. Photolysis of these molecules at their V2 sites, by irradiation in the presence of vanadate and Mn2+, yielded fragments of Mr 160,000/270,000 and 165,000/250,000, respectively. These values confirm that the alpha- and beta-heavy chains have masses of 430,000 and 415,000 daltons, respectively. Immunological analysis using monoclonal antibodies revealed that one intermediate chain from trout dynein (IC 2) contains epitopes present in two different intermediate chains from Chlamydomonas dynein. This indicates that specific sequences within the dynein intermediate chains have been highly conserved throughout evolution.  相似文献   

7.
To identify new loci that are involved in the assembly and targeting of dynein complexes, we have screened a collection of motility mutants that were generated by insertional mutagenesis. One such mutant, 5B10, lacks the inner arm isoform known as the I1 complex. This isoform is located proximal to the first radial spoke in each 96-nm axoneme repeat and is an important target for the regulation of flagellar motility. Complementation tests reveal that 5B10 represents a new I1 locus, IDA7. Biochemical analyses confirm that ida7 axonemes lack at least five I1 complex subunits. Southern blots probed with a clone containing the gene encoding the 140-kDa intermediate chain (IC) indicate that the ida7 mutation is the result of plasmid insertion into the IC140 gene. Transformation with a wild-type copy of the IC140 gene completely rescues the mutant defects. Surprisingly, transformation with a construct of the IC140 gene lacking the first four exons of the coding sequence also rescues the mutant phenotype. These studies indicate that IC140 is essential for assembly of the I1 complex, but unlike other dynein ICs, the N-terminal region is not critical for its activity.  相似文献   

8.
The use of bispecific antibodies (BsAbs) to treat human diseases is on the rise. Increasingly complex and powerful therapeutic mechanisms made possible by BsAbs are spurring innovation of novel BsAb formats and methods for their production. The long‐lived in vivo pharmacokinetics, optimal biophysical properties and potential effector functions of natural IgG monoclonal (and monospecific) antibodies has resulted in a push to generate fully IgG BsAb formats with the same quaternary structure as monoclonal IgGs. The production of fully IgG BsAbs is challenging because of the highly heterogeneous pairing of heavy chains (HCs) and light chains (LCs) when produced in mammalian cells with two IgG HCs and two LCs. A solution to the HC heterodimerization aspect of IgG BsAb production was first discovered two decades ago; however, addressing the LC mispairing issue has remained intractable until recently. Here, we use computational and rational engineering to develop novel designs to the HC/LC pairing issue, and particularly for κ LCs. Crystal structures of these designs highlight the interactions that provide HC/LC specificity. We produce and characterize multiple fully IgG BsAbs using these novel designs. We demonstrate the importance of specificity engineering in both the variable and constant domains to achieve robust HC/LC specificity within all the BsAbs. These solutions facilitate the production of fully IgG BsAbs for clinical use.  相似文献   

9.
The dynein light intermediate chain (LIC) is a subunit unique to the cytoplasmic form of dynein, but how it contributes to dynein function is not fully understood. Previous work has established that the LIC homodimer binds directly to the dynein heavy chain and may mediate the attachment of dynein to centrosomes and other cargoes. Here, we report our characterization of the LIC in Drosophila. Unlike vertebrates, in which two Lic genes encode multiple subunit isoforms, the Drosophila LIC is encoded by a single gene. We determined that the single LIC polypeptide is phosphorylated, and that different phosphoisoforms can assemble into the dynein motor complex. Our mutational analyses demonstrate that, similar to other dynein subunits, the Drosophila LIC is required for zygotic development, germline specification of the oocyte, and mitotic cell division. We show that RNA interference depletion of LIC in Drosophila S2 cells does not block the recruitment of a dynein complex to kinetochores, but it does delay inactivation of Mad2 signaling and mitotic progression. Our observations suggest the LIC contributes to a broad range of dynein functions.  相似文献   

10.
Tctex2 is thought to be one of the distorter genes of the mouse t haplotype. This complex greatly biases the segregation of the chromosome that carries it such that in heterozygous +/t males, the t haplotype is transmitted to >95% of the offspring, a phenomenon known as transmission ratio distortion. The LC2 outer dynein arm light chain of Chlamydomonas reinhardtii is a homologue of the mouse protein Tctex2. We have identified Chlamydomonas insertional mutants with deletions in the gene encoding LC2 and demonstrate that the LC2 gene is the same as the ODA12 gene, the product of which had not been identified previously. Complete deletion of the LC2/ODA12 gene causes loss of all outer arms and a slow jerky swimming phenotype. Transformation of the deletion mutant with the cloned LC2/ODA12 gene restores the outer arms and rescues the motility phenotype. Therefore, LC2 is required for outer arm assembly. The fact that LC2 is an essential subunit of flagellar outer dynein arms allows us to propose a detailed mechanism whereby transmission ratio distortion is explained by the differential binding of mutant (t haplotype encoded) and wild-type dyneins to the axonemal microtubules of t-bearing or wild-type sperm, with resulting differences in their motility.  相似文献   

11.
12.
13.
In the filamentous fungus Aspergillus nidulans, the multisubunit motor complex cytoplasmic dynein plays essential roles in nuclear migration and septum positioning. The 8 kDa light chain, LC8, the smallest subunit, is conserved among eukaryotic organisms. Besides being a component in the dynein complex, LC8 also interacts with a wide spectrum of mammalian and viral proteins. To date, the function of this small polypeptide is not well understood. To address this issue, we have created a deletion mutation (DeltanudG) at the nudG locus encoding LC8 in A. nidulans. At 42 degrees C, the DeltanudG mutant forms minute colonies lacking asexual reproduction: this phenotype resembles the phenotype of the dynein heavy chain null mutant. The mutant nuclei largely clustered in the spore body after conidial germination, and the septum was often assembled distally toward the hyphal apex, whereas a control germling has its nuclei distributed along the hypha and the septum formed near the spore body. When the mutant was grown at 23 degrees C, however, its colony resembled a control one, and so did the patterns of nuclear distribution and septum positioning. Elevation of the growth temperature gradually reduced colony size and abolished asexual sporulation. After a period of growth at 23 degrees C that allowed the nuclei to move out of the spore end, a temperature shift to 42 degrees C prevented newly divided nuclei from migrating apart, suggesting that LC8/NUDG was required for both initiating and maintaining dynein motor functions at elevated temperatures. A functional GFP-NUDA fusion was used to test whether LC8/NUDG is required for DHC (dynein heavy chain)/NUDA localization. We found that at 23 degrees C GFP-NUDA localized to the hyphal apex and the septation site in DeltanudG cells as in control cells. Such localizations were absent at 42 degrees C in mutant cells, but not in control cells. We conclude that LC8 plays a role in DHC localization/function, and the requirement for such a role in A. nidulans cells is temperature dependent.  相似文献   

14.
The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD''s affinity for the doublet microtubule.  相似文献   

15.
Starfish oocyte meiosis provides a good system for studying the mechanism for prometaphase chromosome movement. Since a protein sharing epitopes with sperm dynein might be a force generator for mitosis, the contribution of such a protein was assessed in this movement. Specific antibodies to heavy chains (HCs) and intermediate chains (ICs) of dynein subunits were affinity-purified from whole antidynein serum. We confirmed that the oocytes contain several polypeptides identical to sperm dynein subunits. The anti-HCs binding to in situ antigen was examined in the oocytes permeabilized with detergent at appropriate stages of maturation with special reference to tubulin and chromosomes, and the meiotic apparatus-establishing process was described in terms of a force generator (oocyte dynein). Before resumption of maturation, dynein HCs were particularly associated with prophase chromosomes within the germinal vesicle (GV). After GV breakdown, there was a striking local accumulation of dynein HCs in the "fading GV" (nuclear matrix). When chromosomes were pulled toward the central area between 2 asters, dynein was accumulated at first at the presumptive equator and then moved to the poles, showing uneven localization on the meiotic spindle.  相似文献   

16.
During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model.  相似文献   

17.
18.
The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that is receiving increasing attention as a potential drug target and as a system for studying flagellum biology. RNA interference (RNAi) knockdown is widely used to test the requirement for a protein in flagellar motility and has suggested that normal flagellar motility is essential for viability in bloodstream-form trypanosomes. However, RNAi knockdown alone provides limited functional information because the consequence is often loss of a multiprotein complex. We therefore developed an inducible system that allows functional analysis of point mutations in flagellar proteins in T. brucei. Using this system, we identified point mutations in the outer dynein light chain 1 (LC1) that allow stable assembly of outer dynein motors but do not support propulsive motility. In procyclic-form trypanosomes, the phenotype of LC1 mutants with point mutations differs from the motility and structural defects of LC1 knockdowns, which lack the outer-arm dynein motor. Thus, our results distinguish LC1-specific functions from broader functions of outer-arm dynein. In bloodstream-form trypanosomes, LC1 knockdown blocks cell division and is lethal. In contrast, LC1 point mutations cause severe motility defects without affecting viability, indicating that the lethal phenotype of LC1 RNAi knockdown is not due to defective motility. Our results demonstrate for the first time that normal motility is not essential in bloodstream-form T. brucei and that the presumed connection between motility and viability is more complex than might be interpreted from knockdown studies alone. These findings open new avenues for dissecting mechanisms of flagellar protein function and provide an important step in efforts to exploit the potential of the flagellum as a therapeutic target in African sleeping sickness.  相似文献   

19.
The cytoplasmic dynein motor complex is known to exist in multiple forms, but few specific functions have been assigned to individual subunits. A key limitation in the analysis of dynein in intact mammalian cells has been the reliance on gross perturbation of dynein function, e.g., inhibitory antibodies, depolymerization of the entire microtubule network, or the use of expression of dominant negative proteins that inhibit dynein indirectly. Here, we have used RNAi and automated image analysis to define roles for dynein subunits in distinct membrane-trafficking processes. Depletion of a specific subset of dynein subunits, notably LIC1 (DYNC1LI1) but not LIC2 (DYNC1LI2), recapitulates a direct block of ER export, revealing that dynein is required to maintain the steady-state composition of the Golgi, through ongoing ER-to-Golgi transport. Suppression of LIC2 but not of LIC1 results in a defect in recycling endosome distribution and cytokinesis. Biochemical analyses also define the role of each subunit in stabilization of the dynein complex; notably, suppression of DHC1 or IC2 results in concomitant loss of Tctex1. Our data demonstrate that LIC1 and LIC2 define distinct dynein complexes that function at the Golgi versus recycling endosomes, respectively, suggesting that functional populations of dynein mediate discrete intracellular trafficking pathways.  相似文献   

20.
Cytoplasmic dynein is the multisubunit protein complex responsible for many microtubule-based intracellular movements. Its cargo binding domain consists of dimers of five subunits: the intermediate chains, the light intermediate chains, and the Tctex1, Roadblock, and LC8 light chains. The intermediate chains have a key role in the dynein complex. They bind the three light chains and the heavy chains, which contain the motor domains, but little is known about how the two intermediate chains interact. There are six intermediate chain isoforms, and it has been hypothesized that different isoforms may regulate specific dynein functions. However, there are little data on the potential combinations of the intermediate chain isoforms in the dynein complexes. We used co-immunoprecipitation analyses to demonstrate that all combinations of homo- and heterodimers of the six intermediate chains are possible. Therefore the formation of dynein complexes with different combinations of isoforms is not limited by interaction between the various intermediate chains. We further sought to identify the domain necessary for the dimerization of the intermediate chains. Analysis of a series of truncation and deletion mutants showed that a 61-amino-acid region is necessary for dimerization of the intermediate chain. This region does not include the N-terminal coiled-coil, the C-terminal WD repeat domain, or the three different binding sites for the Tctex1, LC8, and Roadblock light chains. Analytical gel filtration and covalent cross-linking of purified recombinant polypeptides further demonstrated that the intermediate chains can dimerize in vitro in the absence of the light chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号