首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enzyme activity, does not serve as the nucleophile in the catalytic centre as proposed. When it is replaced by Ala, the resulting mutant enzyme E368A exhibits comparable activity as found for E368D in respect to vanillin. Enzyme activities of wild-type and E368A towards several substrates were not affected at the same level. His360 at position 1 of NRD1beta glycosyltransferases occupies a more crucial role as expected. When it is exchanged against other basic amino acids such as Lys or Arg the enzyme activity decreases approximately 1000-fold. Replacement of His360 by Glu leads to a mutant enzyme (H360E) with an approximately 4000-fold lower activity compared with the wild-type. This mutein still produces a beta-glucoside, not an alpha-glucoside and therefore indicates that generation of the typical E-E motif of NRD1alpha glycosyltransferases does not convert a NRD1beta enzyme into a NRD1alpha enzyme. The presented data do not support several suggestions made in the literature about catalytic amino acids involved in the glycosyltransfer reaction.  相似文献   

3.
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.  相似文献   

4.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.  相似文献   

5.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

6.
By combining our knowledge of the crystal structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the sequence of the photosynthetic NADP-dependent GAPDH of the chloroplast, two particular amino acid residues were predicted as the principal determinants of differing coenzyme specificity. By use of site-directed mutagenesis, the amino acids Leu 187 and Pro 188 of GAPDH from Bacillus stearothermophilus have been replaced with Ala 187 and Ser 188, which occur in the sequence from the chloroplast enzyme. The resulting mutant was shown to be catalytically active not only with its natural coenzyme NAD but also with NADP, thus confirming the initial hypothesis. This approach has not only enabled us to alter the coenzyme specificity by minimal amino acid changes but also revealed factors that control the relative affinity of the enzyme for NAD and NADP.  相似文献   

7.
Protein stabilization by immobilization has been proposed to be most effective if the protein is attached to the carrier at that region where unfolding is initiated. To probe this hypothesis, we have studied the effects of site-specific immobilization on the thermal stability of mutants of the thermolysin-like protease from Bacillus stearothermophilus (TLP-ste). This enzyme was chosen because previous studies had revealed which parts of the molecule are likely to be involved in the early steps of thermal unfolding. Cysteine residues were introduced by site-directed mutagenesis into various positions of a cysteine-free variant of TLP-ste. The mutant enzymes were immobilized in a site-specific manner onto Activated Thiol-Sepharose. Two mutants (T56C, S65C) having their cysteine in the proposed unfolding region of TLP-ste showed a 9- and 12-fold increase in half-lives at 75 degrees C due to immobilization. The stabilization by immobilization was even larger (33-fold) for the T56C/S65C double mutant enzyme. In contrast, mutants containing cysteines in other parts of the TLP-ste molecule (N181C, S218C, T299C) showed only small increases in half-lives due to immobilization (maximum 2.5-fold). Thus, the stabilization obtained by immobilization was strongly dependent on the site of attachment. It was largest when TLP-ste was fixed to the carrier through its postulated unfolding region. The concept of the unfolding region may be of general use for the design of strategies to stabilize proteins.  相似文献   

8.
Unfolding in the N-terminal region of RNase A was studied by the nonradiative energy-transfer technique. RNase A was labeled with a nonfluorescent acceptor (2,4-dinitrophenyl) on the alpha-amino group and a fluorescent donor (ethylenediamine monoamide of 2-naphthoxyacetic acid) on a carboxyl group in the vicinity of residue 50 (75% at Glu-49 and 25% at Asp-53). The distribution of donor labeling sites does not affect the results of this study since they are close in both the sequence and the three-dimensional structure. The sites of labeling were determined by peptide mapping. The derivatives possessed full enzymatic activity and underwent reversible thermal transitions. However, there were some quantitative differences in the thermodynamic parameters. When the carboxyl groups were masked, there was a 5 degrees C lowering of the melting temperature at pH 2 and 4, and no significant change in delta H(Tm). Labeling of the alpha-amino group had no effect on the melting temperature or delta H(Tm) at pH 2 but did result in a dramatic decrease in delta H(Tm) of the unfolding reaction at pH 4. The melting temperature did not change appreciably at pH 4, indicating that an enthalpy/entropy compensation had occurred. The efficiencies of energy transfer determined with both fluorescence intensity and lifetime measurements were in reasonably good agreement. The transfer efficiency dropped from about 60% under folding conditions to roughly 20% when the derivatives were unfolded with disulfide bonds intact and was further reduced to 5% when the disulfide bonds were reduced. The interprobe separation distance was estimated to be 35 +/- 2 A under folding conditions. The contribution to the interprobe distance resulting from the finite size of the probes was treated by using simple geometric considerations and a rotational isomeric state model of the donor probe linkage. With this model, the estimated average interprobe distance of 36 A is in excellent agreement with the experimental result cited above.  相似文献   

9.
10.
The aromatic l-alpha-hydroxy acid dehydrogenase (AHDAH) from Trypanosoma cruzi has over 50% sequence identity with cytosolic malate dehydrogenases (cMDHs), yet it is unable to reduce oxaloacetate. Molecular modeling of the three-dimensional structure of AHADH using the pig cMDH as template directed the construction of several mutants. AHADH shares with MDHs the essential catalytic residues H195 and R171 (using Eventoff's numbering). The AHADH A102R mutant became able to reduce oxaloacetate, while remaining fully active towards aromatic alpha-oxoacids. The Y237G mutant diminished its affinity for all of the natural substrates, whereas the double mutant A102R/Y237G was more active than Y237G and had similar activity with oxaloacetate and with aromatic substrates. The present results reinforce our proposal that AHADH arose by a moderate number of point mutations from a cMDH no longer present in the parasite.  相似文献   

11.
On the basis of sequence and three-dimensional structure comparison between Anabaena PCC7119 ferredoxin-NADP(+) reductase (FNR) and other reductases from its structurally related family that bind either NADP(+)/H or NAD(+)/H, a set of amino acid residues that might determine the FNR coenzyme specificity can be assigned. These residues include Thr-155, Ser-223, Arg-224, Arg-233 and Tyr-235. Systematic replacement of these amino acids was done to identify which of them are the main determinants of coenzyme specificity. Our data indicate that all of the residues interacting with the 2'-phosphate of NADP(+)/H in Anabaena FNR are not involved to the same extent in determining coenzyme specificity and affinity. Thus, it is found that Ser-223 and Tyr-235 are important for determining NADP(+)/H specificity and orientation with respect to the protein, whereas Arg-224 and Arg-233 provide only secondary interactions in Anabaena FNR. The analysis of the T155G FNR form also indicates that the determinants of coenzyme specificity are not only situated in the 2'-phosphate NADP(+)/H interacting region but that other regions of the protein must be involved. These regions, although not interacting directly with the coenzyme, must produce specific structural arrangements of the backbone chain that determine coenzyme specificity. The loop formed by residues 261-268 in Anabaena FNR must be one of these regions.  相似文献   

12.
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.  相似文献   

13.
The method of limited proteolysis has proven to be appropriate for the determination of unfolding rate constants (k(U)) of ribonuclease A in the transition region of thermal denaturation [Arnold, U. & Ulbrich-Hofmann, R. (1997) Biochemistry 36, 2166-2172]. The aim of the present paper was to extend this procedure to the pretransition region of thermally and urea-induced denaturation where spectroscopic methods do not allow direct measurement of k(U). The results show that the approach can be applied successfully to denaturing (free energy of unfolding Delta G < 10 kJ.mol(-1)) and to marginally native conditions (Delta G = 10-25 kJ.mol(-1)). Under moderately (Delta G = 25-30 kJ.mol(-1)) and strongly native conditions (Delta G > 30 kJ.mol(-1)), however, the determination of kU was not possible in this way as the proteolytic degradation of ribonuclease A by thermolysin or trypsin was no longer determined by global unfolding. Here, proteolysis proceeds via the native RNase A. In the presence of low concentrations of urea, the rate constants of proteolysis were, surprisingly, smaller than in the absence of urea. As the protease activity has been taken into account, this result points to a local stabilization of the RNase A molecule.  相似文献   

14.
The subclass B3 FEZ-1 beta-lactamase produced by Fluoribacter (Legionella) gormanii is a Zn(II)-containing enzyme that hydrolyzes the beta-lactam bond in penicillins, cephalosporins, and carbapenems. FEZ-1 has been extensively studied using kinetic, computational modeling and x-ray crystallography. In an effort to probe residues potentially involved in substrate binding and zinc binding, five site-directed mutants of FEZ-1 (H121A, Y156A, S221A, N225A, and Y228A) were prepared and characterized using metal analyses and steady state kinetics. The activity of H121A is dependent on zinc ion concentration. The H121A monozinc form is less active than the dizinc form, which exhibits an activity similar to that of the wild type enzyme. Tyr156 is not essential for binding and hydrolysis of the substrate. Substitution of residues Ser221 and Asn225 modifies the substrate profile by selectively decreasing the activity against carbapenems. The Y228A mutant is inhibited by the product formed upon hydrolysis of cephalosporins. A covalent bond between the side chain of Cys200 and the hydrolyzed cephalosporins leads to the formation of an inactive and stable complex.  相似文献   

15.
The voltage-dependent anion-selective channel (VDAC) of the mitochondrial outer membrane is formed by a small ( 30 kDa) polypeptide, but shares with more complex channels the properties of voltage-dependent gating and ion selectivity. Thus, it is a useful model for studying these properties. The molecular biology techniques available in yeast allow us to construct mutant versions of the cloned yeast VDAC genein vitro, using oligonucleotide-directed mutagenesis, and to express the mutant genes in yeast cells in the absence of wild-type VDAC. We find that one substitution mutation (lys 61 to glu) alters the selectivity of VDAC.  相似文献   

16.
Carrigan JB  Engel PC 《The FEBS journal》2007,274(19):5167-5174
Glutamate dehydrogenase (EC 1.4.1.2-4) from Peptostreptococcus asaccharolyticus has a strong preference for NADH over NADPH as a coenzyme, over 1000-fold in terms of kcat/Km values. Sequence alignments across the wider family of NAD(P)-dependent dehydrogenases might suggest that this preference is mainly due to a negatively charged glutamate at position 243 (E243) in the adenine ribose-binding pocket. We have examined the possibility of altering coenzyme specificity of the Peptostreptococcus enzyme, and, more specifically, the role of residue 243 and neighbouring residues in coenzyme binding, by introducing a range of point mutations. Glutamate dehydrogenases are unusual among dehydrogenases in that NADPH-specific forms usually have aspartate at this position. However, replacement of E243 with aspartate led to only a nine-fold relaxation of the strong discrimination against NADPH. By contrast, replacement with a more positively charged lysine or arginine, as found in NADPH-dependent members of other dehydrogenase families, allows a more than 1000-fold shift toward NADPH, resulting in enzymes equally efficient with NADH or NADPH. Smaller shifts in the same direction were also observed in enzymes where a neighboring tryptophan, W244, was replaced by a smaller alanine (approximately six-fold) or Asp245 was changed to lysine (32-fold). Coenzyme binding studies confirm that the mutations result in the expected major changes in relative affinities for NADH and NADPH, and pH studies indicate that improved affinity for the extra phosphate of NADPH is the predominant reason for the increased catalytic efficiency with this coenzyme. The marked difference between the results of replacing E243 with aspartate and with positive residues implies that the mode of NADPH binding in naturally occurring NADPH-dependent glutamate dehydrogenases differs from that adopted in E243K or E243D and in other dehydrogenases.  相似文献   

17.
J T Chen  K Taira  C P Tu  S J Benkovic 《Biochemistry》1987,26(13):4093-4100
The role of Phe-31 of Escherichia coli dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Phe-31, a strictly conserved residue located in a hydrophobic pocket and interacting with the pteroyl moiety of dihydrofolate (H2F), was replaced by Tyr and Val. The kinetic behavior of the mutant enzymes in general is similar to that of the wild type. The rate-limiting step for both mutant enzymes is the release of tetrahydrofolate (H4F) from the E X NADPH X H4F ternary complex as determined for the wild type. The 2-fold increase in V for the two mutant enzymes arises from faster dissociation of H4F from the enzyme-product complex. The quantitative effect of these mutations is to decrease the rate of hydride transfer, although not to the extent that this step becomes partially rate limiting, but to accelerate the dissociation rates of tetrahydrofolate from product complexes so that the opposing effects are nearly compensating.  相似文献   

18.
Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.  相似文献   

19.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

20.
Site-directed mutagenesis of the ecoRII gene has been used to search for the active site of the EcoRII restriction endonuclease. Plasmids with point mutations in ecoRII gene resulting in substitutions of amino acid residues in the Asp110-Glu112 region of the EcoRII endonuclease (Asp110 --> Lys, Asn, Thr, Val, or Ile; Pro111 --> Arg, His, Ala, or Leu; Glu112 --> Lys, Gln, or Asp) have been constructed. When expressed in E. coli, all these plasmids displayed EcoRII endonuclease activity. We also constructed a plasmid containing a mutant ecoRII gene with deletion of the sequence coding the Gln109-Pro111 region of the protein. This mutant protein had no EcoRII endonuclease activity. The data suggest that Asp110, Pro111, and Glu112 residues do not participate in the formation of the EcoRII active site. However, this region seems to be relevant for the formation of the tertiary structure of the EcoRII endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号