首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.  相似文献   

2.
果生刺盘孢侵染危害多种植物,是重要的植物病原真菌。在一些丝状真菌中,敲除非同源末端连接修复通路的关键基因ku70ku80可显著提高同源重组效率,进而提高靶基因置换频率。本研究从果生刺盘孢基因组鉴定到Cfku70Cfku80两个基因,并明确了基因失活对菌株生物学表型和基因敲除效率的影响。敲除Cfku70Cfku80不影响菌株的菌落形态、营养生长、产孢、分生孢子萌发、侵染结构发育和致病;Cfku70基因敲除还大幅提升3个测试基因的敲除效率。本研究证实Cfku70基因失活能显著提高果生刺盘孢的基因敲除效率,适宜作为高效基因敲除的底盘菌株,研究结果为通过批量敲除策略筛选新型致病因子奠定重要基础。  相似文献   

3.
Kim S  Ahn IP  Rho HS  Lee YH 《Molecular microbiology》2005,57(5):1224-1237
Fungal hydrophobins are implicated in cell morphogenesis and pathogenicity in several plant pathogenic fungi including the rice blast fungus Magnaporthe grisea. A cDNA clone encoding a hydrophobin (magnaporin, MHP1) was isolated from a cDNA library constructed from rice leaves infected by M. grisea. The MHP1 codes for a typical fungal hydrophobin of 102 amino acids containing eight cysteine residues spaced in a conserved pattern. Hydropathy analysis of amino acids revealed that MHP1 belongs to the class II group of hydrophobins. The amino acid sequence of MHP1 exhibited about 20% similarity to MPG1, an M. grisea class I hydrophobin. Expression of MHP1 was highly induced during plant colonization and conidiation, but could hardly be detected during mycelial growth. Transformants in which MHP1 was inactivated by targeted gene replacement showed a detergent wettable phenotype, but were not altered in wettability with water. mhp1 mutants also exhibited pleiotropic effects on fungal morphogenesis, including reduction in conidiation, conidial germination, appressorium development and infectious growth in host cells. Furthermore, conidia of mhp1 mutants were defective in their cellular organelles and rapidly lose viability. As a result, mhp1 mutants exhibited a reduced ability to infect and colonize a susceptible rice cultivar. These phenotypes were recovered by re-introduction of an intact copy of MHP1. Taken together, these results indicate that MHP1 has essential roles in surface hydrophobicity and infection-related fungal development, and is required for pathogenicity of M. grisea.  相似文献   

4.
Mark L Farman 《Genetics》2002,160(1):137-148
The Magnaporthe grisea BUF1 gene suffers high-frequency mutation in certain genetic crosses, resulting in buff-colored progeny. Analysis of 16 buf1 mutants arising from a cross with a mutation frequency of 25% revealed that, in every case, the BUF1 gene was deleted. The deletions occurred in only one of the parental chromosomes and were due to intrachromosomal recombination. Tetrad analysis revealed that deletions occurred in 44% of meioses and usually affected both chromatids of the mutable chromosome. This suggests that they happen before the premeiotic round of DNA synthesis. However, they were also almost entirely restricted to heteroallelic crosses. This, together with the discovery of numerous repetitive elements that were present only in the mutable BUF1 locus, suggests that the deletion process is sensitive to pairing interactions between homologous chromosomes, such that only unpaired loci are subject to deletion. Given that karyogamy is not supposed to occur until after premeiotic DNA replication in Pyrenomycetous fungi such as M. grisea, this latter observation would place the time of deletion during, or after, DNA synthesis. These conflicting results suggest that karyogamy might actually precede DNA replication in Pyrenomycetous fungi or that parts of the genome remain unreplicated until after karyogamy and subsequent chromosome pairing have taken place.  相似文献   

5.
In Magnaporthe grisea, a well-conserved mitogen-activated protein (MAP) kinase gene, PMK1, is essential for fungal pathogenesis. In this study, we tested whether the same MAP kinase is essential for plant infection in the gray mold fungus Botrytis cinerea, a necrotrophic pathogen that employs infection mechanisms different from those of M. grisea. We used a polymerase chain reaction-based approach to isolate MAP kinase homologues from B. cinerea. The Botrytis MAP kinase required for pathogenesis (BMP) MAP kinase gene is highly homologous to the M. grisea PMK1. BMP1 is a single-copy gene. bmp1 gene replacement mutants produced normal conidia and mycelia but were reduced in growth rate on nutrient-rich medium. bmp1 mutants were nonpathogenic on carnation flowers and tomato leaves. Re-introduction of the wild-type BMP1 allele into the bmp1 mutant restored both normal growth rate and pathogenicity. Further studies indicated that conidia from bmp1 mutants germinated on plant surfaces but failed to penetrate and macerate plant tissues. bmp1 mutants also appeared to be defective in infecting through wounds. These results indicated that BMP1 is essential for plant infection in B. cinerea, and this MAP kinase pathway may be widely conserved in pathogenic fungi for regulating infection processes.  相似文献   

6.
DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiae gene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku8O associates with the product of the HDF1 gene, forming the major DNA end-binding complex of yeast cells. DNA end binding was absent in ku80delta, hdf1delta, or ku80delta hdf1delta strains. Antisera specific for epitope tags on Ku80 and Hdf1 were used in supershift and immunodepletion experiments to show that both proteins are directly involved in DNA end binding. In vivo, the efficiency of two DNA end-joining processes were reduced >10-fold in ku8Odelta, hdfldelta, or ku80delta hdf1delta strains: repair of linear plasmid DNA and repair of an HO endonuclease-induced chromosomal DSB. These DNA-joining defects correlated with DNA damage sensitivity, because ku80delta and hdf1delta strains were also sensitive to methylmethane sulfonate (MMS). Ku-dependent repair is distinct from homologous recombination, because deletion of KU80 and HDF1 increased the MMS sensitivity of rad52delta. Interestingly, rad5Odelta, also shown here to be defective in end joining, was epistatic with Ku mutations for MMS repair and end joining. Therefore, Ku and Rad50 participate in an end-joining pathway that is distinct from homologous recombinational repair. Yeast DNA end joining is functionally analogous to DSB repair and V(D)J recombination in mammalian cells.  相似文献   

7.
Targeted gene replacement in the thermotolerant yeast Kluyveromyces marxianus KCTC 17555 has been hampered by its propensity to non-homologous end joining (NHEJ). To enhance homologous recombination (HR) by blocking NHEJ, we identified and disrupted the K. marxianus KU80 gene. The ku80 deletion mutant strain (Kmku80?) of K. marxianus KCTC 17555 did not show apparent growth defects under several conditions with the exception of exposure to tunicamycin. The targeted disruption of the three model genes, KmLEU2, KmPDC1, and KmPDC5, was increased by 13–70 % in Kmku80?, although the efficiency was greatly affected by the length of the homologous flanking fragments. In contrast, the double HR frequency was 0–13.7 % in the wild-type strain even with flanking fragments 1 kb long. Therefore, Kmku80? promises to be a useful recipient strain for targeted gene manipulation.  相似文献   

8.
Utsumi, H., Tano, K., Takata, M., Takeda, S. and Elkind, M. M. Requirement for Repair of DNA Double-Strand Breaks by Homologous Recombination in Split-Dose Recovery. Radiat. Res. 155, 680-686 (2001). Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and is believed to be the result of the repair of sublethal damage. It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism(s) of this repair, we analyzed the knockout mutants KU70-/-, RAD54-/-, and KU70-/-/RAD54-/- of the chicken B-cell line, DT40. RAD54 participates in the recombinational repair of DNA double-strand breaks (DSBs), while members of the KU family of proteins are involved in nonhomologous end joining. Split-dose recovery was observed in the parent DT40 and the KU70-/- cells. Moreover, the split-dose survival enhancement had all of the characteristics demonstrated earlier for the repair of sublethal damage, e.g., the reappearance of the shoulder on the survival curve with dose fractionation; cyclic fluctuation in cell survival at 37 degrees C; repair and no cyclic fluctuation at 25 degrees C. These results strongly suggest that repair of sublethal damage is due to DSB repair mediated by homologous recombination, and that these DNA DSBs constitute sublethal damage.  相似文献   

9.
K P Dixon  J R Xu  N Smirnoff    N J Talbot 《The Plant cell》1999,11(10):2045-2058
The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmotic stress. During acute and chronic hyperosmotic stress adaptation, M. grisea accumulates arabitol as its major compatible solute in addition to smaller quantities of glycerol. A mitogen-activated protein kinase-encoding gene OSM1 was isolated from M. grisea and shown to encode a functional homolog of HIGH-OSMOLARITY GLYCEROL1 (HOG1), which encodes a mitogen-activated protein kinase that regulates cellular turgor in yeast. A null mutation of OSM1 was generated in M. grisea by targeted gene replacement, and the resulting mutants were sensitive to osmotic stress and showed morphological defects when grown under hyperosmotic conditions. M. grisea deltaosm1 mutants showed a dramatically reduced ability to accumulate arabitol in the mycelium. Surprisingly, glycerol accumulation and turgor generation in appressoria were unaltered by the Deltaosm1 null mutation, and the mutants were fully pathogenic. This result indicates that independent signal transduction pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection. Consistent with this, exposure of M. grisea appressoria to external hyperosmotic stress induced OSM1-dependent production of arabitol.  相似文献   

10.
11.
Penicillium marneffei is an opportunistic pathogen of humans and displays a temperature dependent dimorphic transition. Like many fungi, exogenous DNA introduced by DNA mediated transformation is integrated randomly into the genome resulting in inefficient gene deletion and position-specific effects. To enhance successful gene targeting, the consequences of perturbing components of the non-homologous end joining recombination pathway have been examined. The deletion of the KU70 and LIG4 orthologs, pkuA and ligD, respectively, dramatically enhanced the observed homologous recombination frequency leading to efficient gene deletion. While ΔpkuA was associated with reduced genetic stability over-time, ΔligD represents a suitable recipient strain for downstream applications and combined with a modified Gateway? system for the rapid generation of gene deletion constructs, this represents an efficient pipeline for characterizing gene function in P. marneffei.  相似文献   

12.
ku基因介导的非同源末端连接(NHEJ)途径是DNA双链断裂(DSBs)的一种修复机制,它不依赖于同源重组,且通过与之竞争而削弱同源重组。由于ku基因在生物进化过程中的高度保守性,其功能在很多微生物中已经得到研究,尤其在丝状真菌中,将ku基因敲除,在NHEJ途径缺陷的背景下,同源重组发挥主要作用,基因敲除的频率大为提高,从而方便了对基因功能的研究。  相似文献   

13.
Lau G  Hamer JE 《The Plant cell》1996,8(5):771-781
MPG1, a pathogenicity gene of the rice blast fungus Magnaporthe grisea, is expressed during pathogenesis and in axenic culture during nitrogen or glucose limitation. We initiated a search for regulatory mutations that would impair nitrogen metabolism, MPG1 gene expression, and pathogenicity. First, we developed a pair of laboratory strains that were highly fertile and pathogenic toward barley. Using a combinatorial genetic screen, we identified mutants that failed to utilize a wide range of nitrogen sources (e.g., nitrate or amino acids) and then tested the effect of these mutations on pathogenicity. We identified five mutants and designated them Nr- (for nitrogen regulation defective). We show that two of these mutations define two genes, designated NPR1 and NPR2 (for nitrogen pathogenicity regulation), that are essential for pathogenicity and the utilization of many nitrogen sources. These genes are nonallelic to the major nitrogen regulatory gene in M. grisea and are required for expression of the pathogenicity gene MPG1. We propose that NPR1 and NPR2 are major regulators of pathogenicity in M. grisea and may be novel regulators of nitrogen metabolism in fungi.  相似文献   

14.
15.
王徐萍  刘晴  董彩虹 《菌物学报》2021,40(7):1723-1736
ku70ku80是非同源末端连接修复通路的关键基因,在一些丝状真菌中其基因敲除株可作为底盘菌株,提高同源重组效率和基因敲除效率。本研究从蛹虫草基因组中鉴定得到Cmku70Cmku80基因,分别编码分子量为71.50kDa和80.96kDa的蛋白,均含有Ku core结构域,预测均定位于细胞核。系统进化分析表明Ku70和Ku80蛋白在真菌中广泛存在,且具有保守性。通过农杆菌介导的同源重组法敲除Cmku70,发现不影响蛹虫草菌丝生长、见光转色、分生孢子形成及形态等无性生长过程,但敲除后不能形成子实体,因此Cmku70敲除株不宜用作蛹虫草生长发育相关基因高效敲除的底盘菌株。  相似文献   

16.
Parp-1 and Parp-2 are activated by DNA breaks and have been implicated in the repair of DNA single-strand breaks (SSB). Their involvement in double-strand break (DSB) repair mediated by homologous recombination (HR) or nonhomologous end joining (NHEJ) remains unclear. We addressed this question using chicken DT40 cells, which have the advantage of carrying only a PARP-1 gene but not a PARP-2 gene. We found that PARP-1(-/-) DT40 mutants show reduced levels of HR and are sensitive to various DSB-inducing genotoxic agents. Surprisingly, this phenotype was strictly dependent on the presence of Ku, a DSB-binding factor that mediates NHEJ. PARP-1/KU70 double mutants were proficient in the execution of HR and displayed elevated resistance to DSB-inducing drugs. Moreover, we found deletion of Ligase IV, another NHEJ gene, suppressed the camptothecin of PARP-1(-/-) cells. Our results suggest a new critical function for Parp in minimizing the suppressive effects of Ku and the NHEJ pathway on HR.  相似文献   

17.
稻瘟病菌T-DNA插入方法优化及其突变体分析   总被引:10,自引:0,他引:10  
优化了农杆菌介导转化稻瘟病菌获得T-DNA插入突变的条件,包括选择转化子的潮霉素B用量,抑制农杆菌的抗生素头孢噻肟钠和羧苄青霉素的配比,不同转化阶段培养基的选择等。转化1×106个孢子平均可获得约500个左右的转化子,PCR和TAILPCR检测表明约85%转化子中含T-DNA插入。对1520个突变体进行形态变异观察,发现菌落颜色突变的有15个;随机取58个突变体进行比较,发现产孢量减少的4个,孢子萌发率降低的8个,附着胞形成率降低的9个;还获得对水稻品种C101LAC(Pi-1)和751127(Pi-9)致病的突变体,为进一步克隆相应的无毒基因奠定了基础。  相似文献   

18.
Trimeric G-proteins transmit extracellular signals to various downstream effectors (e.g. MAP kinases) in eukaryotes. In the rice blast fungus Magnaporthe grisea, the Pmk1 MAP kinase is essential for appressorium formation and infectious growth. The pmk1 deletion mutant fails to form appressoria but still responds to exogenous cAMP for tip deformation. Since gene disruption mutants of three Galpha subunits still form appressoria and are phenotypically different from pmk1 mutants, it is likely that the Pmk1 pathway is activated by Gbeta in M. grisea. In this study, we isolated and characterized the MGB1 gene that encodes the G subunit in M. grisea. Mutants disrupted in MGB1 were reduced in conidiation. Conidia from mgb1 mutants were defective in appressorium formation and failed to penetrate or grow invasively on rice leaves. Exogenous cAMP induced appressorium formation in mgb1 mutants, but these appressoria were abnormal in shape and could not penetrate. The intracellular cAMP level was reduced in mgb1 mutants and the defects in conidiation and hyphal growth were partially suppressed with 1 mM cAMP. Transformants expressing multiple copies of MGB1 were able to form appressoria on hydrophilic surfaces. Our results suggest that MGB1 may be involved in the cAMP signalling for regulating conidiation, surface recognition and appressorium formation. The Pmk1 pathway may be the downstream target of MGB1 for regulating penetration and infectious hyphae growth in M. grisea.  相似文献   

19.
Fungal plant pathogens have evolved diverse strategies to overcome the multilayered plant defence responses that confront them upon host invasion. Here we show that pathogenicity of the cucumber anthracnose fungus, Colletotrichum lagenarium, and the rice blast fungus, Magnaporthe grisea, requires a gene orthologous to Saccharomyces cerevisiae SSD1, a regulator of cell wall assembly. Screening for C. lagenarium insertional mutants deficient in pathogenicity led to the identification of ClaSSD1. Following targeted gene replacement, appressoria of classd1 mutants retained the potential for penetration but were unable to penetrate into host epidermal cells. Transmission electron microscopy suggested that appressorial penetration by classd1 mutants was restricted by plant cell wall-associated defence responses, which were observed less frequently with the wild-type strain. Interestingly, on non-host onion epidermis classd1 mutants induced papilla formation faster and more abundantly than the wild type. Similarly, colonization of rice leaves by M. grisea was severely reduced after deletion of the orthologous MgSSD1 gene and attempted infection by the mutants was accompanied by the accumulation of reactive oxygen species within the host cell. These results suggest that appropriate assembly of the fungal cell wall as regulated by SSD1 allows these pathogens to establish infection by avoiding the induction of host defence responses.  相似文献   

20.
In many eukaryotic organisms, the non-homologous end-joining (NHEJ) system is a major pathway for the repair of DNA double-strand breaks (DSBs). DNA ligase IV is a component of the NHEJ system and is strictly required for the NHEJ system in Saccharomyces cerevisiae and in Neurospora crassa. To investigate the functions of DNA Ligase IV in Magnaporthe grisea, we generated deletion mutants of MGLIG4, which encodes a homolog of N. crassa DNA Ligase IV. Mutants (mglig4) showed no defects in asexual or sexual growth, and were fully pathogenic. Compared to the wild-type, mglig4 exhibited weak sensitivity to a DNA-damaging agent, camptothecin. In addition, the frequency of targeted-gene replacement was relatively elevated in mglig4, although this varied in a gene-dependent manner. Surprisingly, non-homologous integration of DNA was frequently observed in mglig4 transformants. Our results demonstrate that MgLig4 is involved in, but not essential for, the NHEJ system in M. grisea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号