首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophysiological studies were performed on adult cats under ethaminal anesthesia. Kinesthetic potentials were evoked by passive extension of the ulnar joint and recorded in contralateral primary somatosensory cortical area. Natural (nonelectrical) stimulation of peripheral kinesthetic receptors was performed according to the author's original method. The results obtained show significantly shorter latent period of contralateral kinesthetic potentials in comparison with somatosensory potentials in response to electrical stimulation of the skin. These data demonstrate the possibility of super-rapid conduction of modal-specific volleys to the cortical projection centres in the kinesthetic system of cats.  相似文献   

2.
Since our previous study of pain somatosensory evoked potentials (SEPs) following CO2 laser stimulation of the hand dorsum could not clarify whether the early cortical component NI was generated from the primary somatosensory cortex (SI) or the secondary somatosensory cortex (SII) or both, the scalp topography of SEPs following CO2 laser stimulation of the foot dorsum was studied in 10 normal subjects and was compared with that of the hand pain SEPs and the conventional SEPs following electrical stimulation of the posterior tibial nerve recorded in 8 and 6 of the 10 subjects, respectively. Three components (N1, N2 and P2) were recorded for both foot and hand pain SEPs. N1 of the foot pain SEPs was maximal at the midline electrodes (Cz or CPz) in all data where that potential was recognized, but the potential field distribution was variable among subjects and even between two sides within the same subject. N1 of the hand pain SEPs was maximal at the contralateral central or midtemporal electrode. The scalp distribution of N2 and P2, however, was not different between the foot and hand pain SEPs. The mean peak latency of N1 following stimulation of foot and hand was found to be 191 msec and 150 msec, respectively, but there was no significant difference in the interpeak latency of Nl-N2 between foot and hand stimulation. It is therefore concluded that NI of the foot pain SEPs is generated mainly from the foot area of SI. The variable scalp distribution of the N7 component of the foot pain SEPs is likely due to an anatomical variability among subjects and even between sides.  相似文献   

3.
The dipole source localization method was used to determine which of the brain areas known to be involved in somatosensation are the best candidate generators of the somatosensory evoked potential evoked by sural nerve stimulation. The ipsilateral central negativity and contralateral frontal positivity which occurred between 58 and 90 msec post stimulus (stable period 1) were best represented by a single source located in the primary somatosensory cortex (SI). The symmetrical central negativity and bilateral frontal positivity which occurred between 92 and 120 msec post stimulus (stable period 2) was best represented by 3 sources. One of these sources was located in SI and the other 2 were located bilaterally in either the frontal operculum or near the second somatosensory cortex (SII). The widespread negativity whose minimum was located in the contralateral fronto-temporal region and which occurred between 135 and 157 msec post stimulus (stable period 3) was also best represented by 3 sources. Two of these sources may be located bilaterally in the hippocampus. We cannot, however, eliminate the possibility that multiple sources in the cortex overlying the hippocampus (e.g., SII and frontal cortex) are responsible for these potentials. At innocuous stimulus levels the third source for stable period 3 was located near the vertex, possibly involving the supplementary motor cortex, whereas at noxious levels this source appears to be located in the cingulate cortex. We were unable to achieve any convincing source localization for the widespread positivity which occurred between 178 and 339 msec post stimulus (stable periods 4–6). Available evidence suggests that more sources were active during this interval than the three we could reliably test under these conditions.  相似文献   

4.
Somatosensory evoked potentials (SEPs) to median nerve and finger stimulation were analyzed by means of spatio-temporal dipole modelling combined with 3D-NMR tomography in 8 normal subjects. The early SEPs were modelled by 3 equivalent dipoles located in the region of the brain-stem (B) and in the region of the contralateral somatosensory cortex (T and R). Dipole B explained peaks P14 and N18 at the scalp. Dipole T was tangentially oriented and explained the N20-P20, dipole R was radially oriented and modelled the P22. The tangential dipole sources T were located within a distance of 6 mm on the average and all were less than 9 mm from the posterior bank of the central sulcus. In 6 subjects the tangential sources related to finger stimulation arranged along the central sulcus according to the known somatotopy. The radial sources did not show a consistent somatotopic alignment across subjects. We conclude that the combination of dipole source analysis and 3D-NMR tomography is a useful tool for functional localization within the human hand somatosensory cortex.  相似文献   

5.
In 15 normal subjects the latency of electrically elicited long-latency reflexes (LLRs) of thenar muscles was compared with somatosensory evoked potentials (SEPs) after median nerve stimulation and with the latencies of thenar muscle potentials after transcranial stimulation (TCS) of the motor cortex. Assuming a transcortical reflex pathway the intracortical relay time for the LLR was calculated to be 10.4±1.9 msec (mean±S.D.) or 8.1 ± 1.6 msec depending on the experimental conditions. The duration of the cortical relay time is not correlated with the peripheral or central conduction times, with body size or arm length. If the LLRs of hand muscles are conducted transcortically the long duration of the cortical relay time suggests a polysynaptic pathway.  相似文献   

6.
Abstract

Objectives: Little is known about differences of cortical activation according to body location. We attempted to compare brain activation patterns by somatosensory stimulation on the palm and dorsum of the hand, using functional magnetic resonance imaging (fMRI).

Method: We recruited 15 healthy right-handed volunteers for this study. fMRI was performed during touch stimulation using a rubber brush on an area of the same size on the palm or dorsum of the hand. Regions of interest (ROIs) were drawn at the primary sensory–motor cortex (SM1), posterior parietal cortex, and secondary somatosensory cortex.

Results: Group analysis of fMRI data indicated that touch stimulation on the palm resulted in production of more activated voxels in the contralateral SM1 and posterior parietal cortex than on the dorsum of the hand. The most activated ROI was found to be the contralateral SM1 by stimulation of the palm or dorsum, and the number of activated voxels (5875) of SM1 by palm stimulation was more than 2 times that (2282) of dorsum stimulation. The peak activated value in the SM1 by palm stimulation (16.43) was also higher than that of the dorsum (5.52).

Conclusion: We found that stimulation of the palm resulted in more cortical activation in the contralateral SM1 than stimulation of the dorsum. Our results suggested that the palm of the hand might have larger somatotopy of somatosensory representation for touch in the cerebral cortex than the dorsum of the hand. Our results would be useful as a rehabilitation strategy when more or less somatosensory stimulation of the hand is necessary.  相似文献   

7.
Magnetoencephalography (MEG) is a totally non-invasive research method which provides information about cortical dynamics on a millisecond time-scale. Whole-scalp magnetic field patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network. At the SI cortex, the responses reflect mainly the activity of area 3b, with clearly somatotopical representations of different body parts. The SII cortex is activated bilaterally and it also receives, besides tactile input, nociceptive afference. Somatically evoked MEG signals may also be detected from the posterior parietal cortex, central mesial cortex and the frontal lobe. The serial versus parallel processing in the cortical somatosensory network is still under debate.  相似文献   

8.
Simultaneous recordings were obtained from the primary and secondary somatosensory cortical areas (SI and SII) in cats anesthetized with ketamine or pentobarbital. A total of 40 individual neurons were studied (29 in SII and 11 in SI) before, during, and following injections of microliter quantities of lidocaine hydrochloride in the other ipsilateral cortical area. Activity in the cortex injected with the local anesthetic was monitored with single-neuron, multi-neuron, or evoked potential responses to determine the time course of inactivation within 0.5-2 mm of the injection sites. Recording sites in both cortical locations were in the representations of the distal forelimb. Responses were elicited by transcutaneous electrical stimulation across the receptive fields with needle electrodes. Short-latency responses were synchronously activated, and, in those circumstances where single neurons were isolated in both areas, no overall differences in latency were noted. Anesthetization of either cortical area never blocked access of somatosensory information to the intact area, even when the injected cortex was completely silenced in the vicinity of the injection mass. In 15 SII neurons and 7 SI neurons, changes were seen in short-latency evoked responses to stimulation of their receptive fields or in background activity following local anesthesia of the other area through several cycles of injection and recovery. In 7 of these 15 SII cells, changes were noted in the timing and/or firing rates of the short-latency responses; changes were noted in the short-latency responses of 2 of these 7 SI cells while SII was silenced. In 11 SII and 6 SI cells, “background” activity that was recorded during the interstimulus intervals either increased (most cases) or decreased during local anesthesia of the other area. The results are discussed in reference to the hypothesis that primary sensory cortical areas feed information forward to secondary areas, and these feed back modulatory controls to the primary regions.  相似文献   

9.
The short-term effect of total or partial single-digit denervation on receptive fields (RFs) of neurons in somatosensory cortex (area 3b) was examined in five macaque monkeys. In two animals, after denervation by amputation, it was found that electrode positions that initially recorded neurons with RFs on the amputated digit had new RFs extending from the wound. Often the new fields were on adjacent digits. Neurons with initial RFs that were partially amputated, or in some cases close to but not on the amputated digit, showed considerable expansion of the remaining RF. In three monkeys local anesthesia was used to provide a temporary denervation. In these experiments electrodes were placed in equivalent positions in both cortices. The effect on cortex contralateral to the denervation was similar to that seen with amputation. However, after anesthesia returned to the digit, the expanded RFs contracted. In cortex ipsilateral to the denervation, RFs were on the opposite unaffected hand. These also rapidly expanded and then contracted, with the same time course as their counterparts in cortex contralateral to the denervation. Because of the rapidity of the expansion and its temporary nature with short-term denervation, the basis of the effect is probably an unmasking of existing but normally unexpressed connections, which are normally inhibited by the intact output from the denervated area. The wide arborization fields of thalamocortical afferents provide a potential source for the unmasked sensitivity. A mechanism for the inhibition that normally suppresses the expression of large RFs is not readily apparent. However, work in other species suggests that peripheral C fibers provide the primary source of input to central inhibitory circuits.  相似文献   

10.
Changes in evoked potentials in the first visual (VI), first somatic (SI), and parietal areas of the cortex during local cooling of each area were investigated under pentobarbital anesthesia. Two types of interaction were distinguished. Type I interaction was found in all areas in the early stages of local cooling and was reflected in a similar decrease in amplitude of evoked potentials in intact parts of the cortex. In the thalamic association nuclei — the pulvinar and posterolateral nucleus — somatic evoked potentials were unchanged but visual were transformed differently from those in the cortex. Type IIinteraction was found in the later stages of cooling and only between the association area and each of the projection areas. It was reflected in a greater change in amplitude of the evoked potentials and also in their configuration. In response to somatic stimulation in the early stage of type II interaction transformation of evoked potentials in the cortex took place sooner than in the nuclei; in the later stage it took place immediately after transformation of the "subcortical" evoked potentials. In response to photic stimulation transformations of cortical evoked potentials were always preceded by the corresponding transformations in the nuclei. It is suggested that type I interaction is formed by intercortical connections and type II by direct and subcortical relay connections. Differences in the role of the association area in interaction of types I and II when activated by stimuli of different modalities are discussed.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 573–581, November–December, 1978.  相似文献   

11.
The electrophysiological experiments were carried out on five male macaques rhesus under nembutal anesthesia. Kinesthetic evoked potentials in response to arm rotation in the elbow joint were registered in the contralateral primary somatosensory cortex. The data obtained show a significant increase in the duration of kinesthetic potential first positive component with 10 degrees-40 degrees arm rotation amplitude, as compared to 2 degrees rotation. On the contrary, the latent period and amplitude of the component in this stimulation range (2 degrees-40 degrees) were similar. It is suggested that the increase in the arm rotation angle is selectively reflected in the temporary parameters of kinesthetic potential first positive component.  相似文献   

12.
The effect of local cooling of the surface of the somatosensory cortex was studied while recording primary response (PR) in the center of a cooled area and evoked potentials (EP) in the striatum to the forepaw stimulation. The cooling which served to arise the amplitude of the PR, served also to arise the amplitude of the EP in the striatum. EP to the stimulus, the sensory representation of which in the cortex was cooled, were facilitated only. Facilitation of the striatal EP was more intense than facilitation of the cortical PR in the cooled area. The level of facilitation of the EP was the same in the region of the striatum which receives corticofugal fibers from the cooled area of the cortex and in other regions of the striatum, receiving the corticofugal fibers from other parts of the cortex. The data show a possibility for the interactions in the striatum of the corticofugal signals from different cortical areas with each other and with the ascending afferent signals.  相似文献   

13.
The rodent whisker sensory system is a commonly used model of cortical processing; however, anesthetics cause profound differences in the shape and timing of evoked responses. Evoked response studies, especially those that use spatial mapping techniques, such as fMRI or optical imaging, will thus show significantly different results depending on the anesthesia used. To describe the effect of behavioral states and commonly used anesthetics, we characterized the early surface-evoked response potentials (ERPs) components (first ERP peak: gamma band 25-45 Hz; fast oscillation: 200-400 Hz; and very fast oscillation: 400-600 Hz) using a 25-channel electrode array on the somatosensory cortex during whisker stimulation. We found significant differences in the ERP shape when ketamine/xylazine, urethane, propofol, isoflurane, and pentobarbital sodium were administered and during sleep and wake states. The highest ERP amplitudes were observed under propofol anesthesia and during quiet sleep. Under isoflurane, the ERP was nearly absent, except for a very late component, which was concombinant with burst synchronization. The slowest responses were seen under urethane and propofol anesthesia. Spatial mapping experiments that use electrical, NMR, or optical techniques must consider the anesthetic dependency of these signals, especially when stimulation protocols or electrical and metabolic responses are compared.  相似文献   

14.
Potentials evoked in nuclei of the reticular formation by electrodermal stimulation of the limbs were investigated in acute experiments on unanesthetized, immobilized rats during cooling of the somatosensory cortex in the area of representation of one forelimb. Evoked potentials in the reticular formation were found to depend on the degree of cold inhibition of the cortical primary response to the same stimulation. The peak time of the main negative wave increased from 40–50 to 60–80 msec with a simultaneous decrease in its amplitude or its total disappearance in the case of deep cooling of the cortex. Cooling of the cortex had a similar although weaker effect on the earlier wave of the evoked potential with a peak time of 14 msec, recorded in the ventral reticular nucleus. In parallel recordings of potentials evoked by stimulation of other limbs they remained unchanged at these same points of the reticular formation or were reduced in amplitude while preserving the same temporal parameters. Cooling of the cortex thus selectively delays the development and reduces the amplitude of the response to stimulation of the limb in whose area of representation transformation of the afferent signal into a corticofugal volley is blocked. Consequently the normal development of both late and early components of the potential evoked in the reticular formation by somatic stimulation requires an additional volley, descending from the cortex, and formed as a result of transformation of the same afferent signal in the corresponding point of the somatosensory cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 32–38, January–February, 1981.  相似文献   

15.
Overduin SA  Servos P 《PloS one》2008,3(1):e1505

Background

Functional imaging has recently been used to investigate detailed somatosensory organization in human cortex. Such studies frequently assume that human cortical areas are only identifiable insofar as they resemble those measured invasively in monkeys. This is true despite the electrophysiological basis of the latter recordings, which are typically extracellular recordings of action potentials from a restricted sample of cells.

Methodology/Principal Findings

Using high-resolution functional magnetic resonance imaging in human subjects, we found a widely distributed cortical response in both primary somatosensory and motor cortex upon pneumatic stimulation of the hairless surface of the thumb, index and ring fingers. Though not organized in a discrete somatotopic fashion, the population activity in response to thumb and index finger stimulation indicated a disproportionate response to fingertip stimulation, and one that was modulated by stimulation direction. Furthermore, the activation was structured with a line of symmetry through the central sulcus reflecting inputs both to primary somatosensory cortex and, precentrally, to primary motor cortex.

Conclusions/Significance

In considering functional activation that is not somatotopically or anatomically restricted as in monkey electrophysiology studies, our methodology reveals finger-related activation that is not organized in a simple somatotopic manner but is nevertheless as structured as it is widespread. Our findings suggest a striking functional mirroring in cortical areas conventionally ascribed either an input or an output somatotopic function.  相似文献   

16.
Surface magnetic and electric recordings were used to localize the sources of late pain-related magnetic fields and electric potentials, evoked by painful intracutaneous electric finger stimulation. We find that the source of the P90m component of the evoked magnetic field lies in the finger area of the primary somatosensory cortex; the sources of the N150m and P250m are found to reside in the frontal operculum. These findings are unexpected from the evoked electric potential data, which suggest a central location for these sources. We also note that the interpretation of the electric data was confounded by the presence of an alpha-like oscillation, which overlapped many components of the evoked potential.  相似文献   

17.
Continuous theta burst stimulation (cTBS) applied over the primary motor cortex (M1) can alleviate pain although the neural basis of this effect remains largely unknown. Besides, the primary somatosensory cortex (S1) is thought to play a pivotal role in the sensori-discriminative aspects of pain perception but the analgesic effect of cTBS applied over S1 remains controversial. To investigate cTBS-induced analgesia we characterized, in two separate experiments, the effect of cTBS applied either over M1 or S1 on the event-related brain potentials (ERPs) and perception elicited by nociceptive (CO2 laser stimulation) and non-nociceptive (transcutaneous electrical stimulation) somatosensory stimuli. All stimuli were delivered to the ipsilateral and contralateral hand. We found that both cTBS applied over M1 and cTBS applied over S1 significantly reduced the percept elicited by nociceptive stimuli delivered to the contralateral hand as compared to similar stimulation of the ipsilateral hand. In contrast, cTBS did not modulate the perception of non-nociceptive stimuli. Surprisingly, this side-dependent analgesic effect of cTBS was not reflected in the amplitude modulation of nociceptive ERPs. Indeed, both nociceptive (N160, N240 and P360 waves) and late-latency non-nociceptive (N140 and P200 waves) ERPs elicited by stimulation of the contralateral and ipsilateral hands were similarly reduced after cTBS, suggesting an unspecific effect, possibly due to habituation or reduced alertness. In conclusion, cTBS applied over M1 and S1 reduces similarly the perception of nociceptive inputs originating from the contralateral hand, but this analgesic effect is not reflected in the magnitude of nociceptive ERPs.  相似文献   

18.
Movement-related potentials (MRPs) associated with tongue protrusions and vocalizations were recorded from chronically implanted subdural electrodes over the lower perirolandic area in 7 patients being evaluated for epilepsy surgery. In 3 patients, tongue protrusions elicited a clearly defined, well localized slow negative Bereitschaftspotential (BP) at the motor tongue area, and a positive BP at the sensory tongue area. At the motor tongue area the negative BP was followed by a negative slope (NS′) and a motor potential (MP), and at the sensory tongue area the positive BP and a positive reafferent potential (RAP) were seen but no NS′ and MP could be identified. In the other 4 patients, tongue protrusions elicited positive BP, NS′ and MP at the motor and sensory tongue area, and positive RAP at the sensory area. It was concluded that BPs, NS′ and MPs are mainly generated in the motor cortex involving the crown as well as the anterior bank of the central fissure. The sensory cortex (areas 3a and 3b) also participated in the generation of BPs but to a lesser degree. Different degree of involvement of these multiple generators most likely explains the interindividual variability of polarity and distribution of the MRPs. RAPS most likely arise from primary sensory areas 1 and 2. Brain potentials were also recorded at the motor (2 patients) and sensory (2 patients) language areas, but no specific language-related potentials could be identified.Evoked potentials to lip stimulation were investigated in 4 patients. In 3 patients, the responses at the sensory tongue area (P16, N21 and P30) had the same latency but opposite polarity to those at the motor tongue area. In the other patient, the responses (P16, N21 and P30) at the motor and sensory tongue areas were of the same polarity. The MRPs to tongue protrusions in those 4 patients revealed the same polarity relationship between the pre- and postcentral potentials. However, the maximal amplitude of evoked potentials and MRPs was seen at almost the same electrodes, suggesting that the main generators for these MRPs and evoked potentials must be located at contiguous areas in the anterior and posterior bank, respectively, of the central fissure.  相似文献   

19.
胡中庭  王庆平 《生理学报》1992,44(4):355-361
Sokoloff's 2-deoxyglucose (2-DG) autoradiographic technique was used to identify changes of glucose metabolic rate in the rat brain following unilateral stimulation of the head of the caudate nucleus. The results were as follows. The local glucose metabolic rate after noxious stimulation was increased in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area, habenular nucleus, head of caudate nucleus, periaqueductal gray (PAG) and dorsal raphe nucleus (P < 0.05). After stimulating the head of the caudate nucleus, the local glucose metabolic rate of nucleus raphe magnus (rm) and nucleus paragigantocellularis (pgcl) was increased significantly and that of the PAG and dorsal raphe nucleus had a tendency to increase, while stimulation of the head of caudate nucleus could partially abolish the increased glucose metabolic rate in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area and habenular nucleus as induced by noxious stimulation. These results suggest that caudate stimulation is able to depress the activation of some brain structures related to nociception and to activate those related to antinociception. The pgcl, rm, PAG and dorsal raphe nucleus might be the key structures participating in the caudate stimulation produced analgesia.  相似文献   

20.
Prior data indicate that graded activation by innocuous thermal stimuli occurs in the dorsal posterior insular (dpIns) cortex of humans, rather than the parietal somatosensory regions traditionally thought necessary for discriminative somatic sensations. We hypothesized that if the dpIns subserves the haptic capacity of localization in addition to discrimination, then it should be somatotopically organized. Using functional magnetic resonance imaging to detect activation in the dpIns by graded cooling stimuli applied to the hand and neck, we found unimodal foci arranged in an anteroposterior somatotopographic pattern, consistent with participation of the dpIns in localization as well as discrimination. This gradient is orthogonal to the mediolateral somatotopy of parietal somatosensory regions, which supports the fundamental conceptual differentiation of the interoceptive somatic representation in the dpIns from the parietal exteroceptive representations. These data also support the suggestion that the poststroke central pain syndrome associated with lesions of the dpIns is a thermoregulatory dysfunction. Finally, another focus of strongly graded activation, which we interpret to represent thermoregulatory behavioral motivation elicited by dynamic cooling, was observed in the dorsal medial cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号