首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional properties of the DNA-binding domain of the human glucocorticoid receptor were investigated using high titer polyclonal antibodies produced against single synthetic peptides or a mixture of peptides whose sequences were derived from the DNA-binding domain of steroid receptor proteins. Three of seven antisera recognized both native and denatured forms of the glucocorticoid receptor, although considerably lower antisera dilutions were required for antibody binding to native receptor. Activation of the glucocorticoid receptor to its DNA-binding form was required for antibody recognition of the native receptor. Antisera to the second finger region of the DNA-binding domain caused a portion of the activated 4S glucocorticoid receptor to sediment as 7 or 9S in sucrose gradients containing 0.4 M KCl, but did not alter the sedimentation of the nontransformed 8S receptor. Specificity of the glucocorticoid receptor-antibody interaction was demonstrated by loss of reactivity after preabsorption with peptide antigens. Antisera that interacted specifically with the glucocorticoid receptor inhibited DNA binding of the activated receptor by as much as 80%. Thus, antibody probes directed against DNA-binding domain sequences provide immunological evidence that glucocorticoid receptor activation exposes the DNA-binding region of the receptor.  相似文献   

2.
We have synthesized three peptides with amino acid sequences identical to those spanning amino acids 201-215, 231-245, and 247-261 of the human estrogen receptor (hER). These peptides were conjugated to keyhole limpet hemocyanin and used as immunogens to develop monoclonal antibodies (MoAbs) to hER. Antibody responses were only elicited by the peptide with amino acid sequence 247-261. Splenocytes from immunized mice were used for hybridoma production. Of the seven MoAbs that recognized the native (functional) form of the ER, four (MoAbs 16, 33, 114, and 213) recognized the ER with high affinity, as demonstrated by the increased sedimentation coefficient of the antibody-complexed ER in sucrose density gradients. Antibodies 318, 35, and 36 bound to ER with low affinity since they immunoprecipitated ER, but the ER-antibody complex appeared to dissociate on sucrose density gradients. The high-affinity MoAbs appear to be site-specific since the peptide competed effectively for binding of the receptor by the antibody. The fact that they reacted with ER from human breast cancer and calf, rat, and mouse uterine tissues suggests that this epitope of the receptor is conserved in these species. Although the DNA-binding region appears to be conserved among the various steroid receptors, these MoAbs did not recognize the native forms of progesterone, androgen, or glucocorticoid receptors. These MoAbs bound to the KCl-activated 4S ER and heat-transformed 5S ER, suggesting that the antibody-binding site is accessible in the monomeric and dimeric forms of ER. The antibodies did not recognize the untransformed 8S ER in the presence of molybdate and without KCl, suggesting that the antibody-binding site in the oligomeric form of ER is inaccessible. The fact that the antibodies did bind to the unoccupied 4S ER was demonstrated by the data obtained with sucrose density gradient analysis followed by postlabeling of ER with [3H]estradiol. The antibodies bound to ERs with high affinity (KD = 0.4 to 1.8 nM). At a fixed concentration of antibody, ERs ranging from 20 to 1,000 fmol were detectable. These MoAbs did not inhibit nuclear or DNA binding of ER in vitro. This can be attributed to the dissociation of the antibodies from ER when the latter interacts with its acceptor site. These results demonstrate the development of site-specific MoAbs to the native form of the hER using synthetic peptides as immunogens.  相似文献   

3.
The glucocorticosteroid receptor (GR) has been studied in oviduct cytosol prepared from estrogen-primed, 4-week-withdrawn chicken. The equilibrium dissociation constant was 6 nM for dexamethasone, and 18 300 receptor sites/cell were measured assuming that all cells contain identical concentrations of GR. Dexamethasone, used in most studies investigating glucocorticosteroid action, was found not to be the best GR ligand. The affinities of several natural and synthetic glucocorticosteroids for GR increased in the following order: cortisol less than deoxycorticosterone less than dexamethasone less than corticosterone less than triamcinolone acetonide. The synthetic steroid RU 486 was the most specific ligand of GR (its affinity was approximately equal to 10-fold higher than that of triamcinolone acetonide), while it did not bind either to plasma transcortin (which binds dexamethasone nor, surprisingly, to progesterone receptor (PR), contrary to what occurs in mammalian species. The molybdate-stabilized, 8-S form of GR was prepared from withdrawn chick oviduct, whole chick embryo or cultured chick embryo fibroblasts (which do not contain PR), and was labeled with either [3H]dexamethasone or [3H]RU 486. The sedimentation coefficient of radioactive ligand--8-S GR complexes was shifted towards heavier forms after incubation with polyclonal (IgG-G3) or monoclonal (BF4) antibodies generated against the molybdate-stabilized, 8-S form of the chick oviduct PR. Since neither IgG-G3 nor BF4 interacted with the steroid binding 4-S form of GR, it is suggested that these antibodies recognized a non-steroid binding protein common to molybdate-stabilized, 8-S forms of GR and PR.  相似文献   

4.
The structure of estrogen-receptor complexes recovered in cytosolic extracts of MCF-7 cells treated with hormone at 2°C was probed by chemical crosslinking of intact cells and sample analysis with four monoclonal anti-estrogen receptor antibodies. When MCF-7 cells were treated with either glutaraldehyde or dithiobis(succinimidyl propionate), cytosoluble estrogen-receptor complexes consisted of two major forms sedimenting as 4 S monomers and 8–9 S salt-resistant oligomers. By high salt sucrose density gradient centrifugation, we could observe that the four monoclonal anti-estrogen receptor antibodies bound different forms of receptor complexes from crosslinked cells. While H222 and H226 antibodies could interact with any form we detected, the D75 and D547 monoclonals could only recognize those showing sedimentation coefficients lower than 7 S. When cytosolic extracts from [35S]-methionine-labeled cells were subjected to immunoprecipitation with H222 and D75 anti-estrogen receptor antibodies, electrophoretic analysis of material extracted from immunoprecipitates revealed the presence of 65 kDa estrogen receptors. If extracts were prepared from crosslinked cells, instead, two more components with estimated molecular masses of 220 and 100 kDa were specifically immunoprecipitated by the H222 antibody, whereas only the 100 kDa component and the estrogen receptor were found in immunoprecipitates obtained with the D75 monoclonal. When estrogen-receptor complexes were immunopurified from extracts prepared after cells had been crosslinked with dithiobis(succinimidyl propionate), and the oligomers were dissociated by treatment with β-mercaptoethanol, electrophoretic analysis of our samples showed that only the 65 kDa estrogen receptor and a 50 kDa protein were selectively immunoprecipitated by anti-estrogen receptor antibodies. We concluded that the structures of cytosoluble estrogen-receptor complexes in MCF-7 cells treated with hormone at 2°C, include oligomeric forms which contain a 50 kDa non-steroid binding protein.  相似文献   

5.
The generation of monoclonal antibodies to synthetic peptides of the glucocorticoid receptor is described. Two antibodies to sequences from the DNA binding region are IgMs. Two other antibodies to sequences in the steroid binding region and the C-terminus belong to the IgG class. The specificity of the IgG binding to the receptor in an ELISA assay is demonstrated by competition with the relevant peptides. Both IgGs are able to recognize the receptor in Western blots, but do not form stable complexes in sucrose gradients. Steroid binding to the receptor is not influenced by preincubation with antibodies. This indicates that denaturation or distortion of the receptor is necessary for the accessibility of these antibodies to their epitopes. Both antibodies can be used to stain the glucocorticoid receptor in neoplastic cells of patients suffering from chronic lymphatic leukemia.  相似文献   

6.
A synthetic 18-amino acid peptide (Cys500-Lys517) was used to raise polyclonal antibodies in rabbits to the glucocorticoid receptor (GR). The sequence of this peptide is identical to that of residues 500-517 of the rat and 481-498 of the human GR. This sequence overlaps the carboxy-terminal end of the core DNA-binding domain and the amino-terminus of the hinge region of the receptor. Antiserum (AP64) was obtained which recognized both human and rat GR, as determined by immunoblots of receptors immunopurified with authentic anti-GR antibodies, immunoadsorption of both specific [3H]dexamethasone-bound GR and 98K receptors that were specifically covalently labeled by [3H]dexamethasone mesylate, and AP64-induced shifts in the elution position of monomeric [3H]dexamethasone-bound GR from Sephacryl S-300. The specificity of AP64 was demonstrated by the ability of the immunizing peptide, but not a peptide of similar length, to inhibit both the antibody-induced change in elution position from Sephacryl S-300 and the antibody-mediated immobilization of [3H]dexamethasone-bound complexes by protein-A. Further studies indicated that AP64 did not react with native steroid-free GR or with steroidbound (or affinity-labeled) unactivated GR, but did selectively associated with monomeric activated, steroid-bound (or affinity labeled) complexes. AP64 also inhibited the DNA binding of activated complexes in a manner that was specifically blocked by the immunizing peptide. Collectively, these data allow the direct localization of a structural region of the GR that is occluded in the unactivated complex but exposed as a result of activation.  相似文献   

7.
Three monoclonal anti-insulin receptor antibodies have been labelled with 125I according to various methods (Cloramine T, Lactoperoxidase and IODO-GEN). The effect of labelling on antibody structure and function has been characterized using the following parameters: a) specific activity obtained in four different labelling procedures, at least; b) TCA labelled antibody precipitable 90 days after labelling; c) interaction between labelled antibodies and the insulin receptor; d) ability of antibodies to inhibit insulin-stimulated receptor auto-phosphorylation. Cloramine T method produced labelled antibody with constant specific activity; however, some preparations were unstable and showed reduced capacity to recognize the insulin receptor. Lactoperoxidase method produced stable antibodies; however, specific activity was highly variable and antibodies had low capacity to interact with the insulin receptor. The IODO-GEN method produced antibodies with constant specific activity, stable, high capacity to interact with the insulin receptor, and, moreover, maintaining in full the capacity to inhibit the insulin-stimulated auto-phosphorylation of the insulin receptor, since it does not induce antibody alterations which in turn affect antibody-receptor interaction biological action.  相似文献   

8.
Monoclonal antibodies to the rat hepatic glucocorticoid receptor (GR) were produced by using 4000-fold-purified unactivated rat hepatic GR as the immunogen in an immunization in vitro. Hybridomas were screened for anti-GR antibody production by using an enzyme-linked immunosorbent assay. The antibody, 3A6, described here, is an IgM (lambda). The interaction of 3A6 with the purified GR was explored by sedimentation analysis, where a shift of the 9 S GR to a form with a higher s20,w value was demonstrated. Binding specificity and sensitivity were demonstrated by protein immunoblotting. 3A6 cross-reacted with all rat tissue glucocorticoid receptors (GRs) examined, except those of the brain. Species cross-reactivity was observed with other mammalian GRs (from human CEM-C7 cells and from pig and mouse liver). Immunocytochemical localization of the GR was assessed by indirect immunofluorescence in intact fixed cells, which demonstrated intense cytoplasmic staining in the absence of pretreatment with glucocorticoids and nuclear localization when cells were pretreated with glucocorticoids. This monoclonal antibody significantly inhibited steroid binding to unoccupied receptor and DNA binding of activated steroid-receptor complexes. Furthermore, preincubation of the purified activated GR complex with 3A6 prevented phosphorylation of the GR in vitro. Thus 3A6 differs from previous monoclonal antibodies to the GR in its capacity to cross-react with the human GR and by its specificity for an epitope on or near a functional domain of the GR.  相似文献   

9.
10.
Glucocorticoid-receptor complex (GR) has been purified from rat liver by differential affinity for DNA before and after activation, followed by ion-exchange chromatography. The purified GR has mol. wt 94,000 dalton. The protein contains three functional domains: (A) a steroid-binding domain; (B) a DNA-binding domain; and (C) a domain necessary for normal biological function. A second protein, with mol. wt 72,000 dalton, copurifies with the GR. This protein does not bind steroid, does not interact with antibodies raised against the GR and does not show the same susceptibility to limited proteolytic cleavage as the 94,000 dalton protein. Analysis of the specific interaction of the purified GR with the mouse mammary tumour virus gene, assayed by glycerol-gradient centrifugation, shows that one molecule of 94,000 dalton protein binds to each of the specific binding sites in the long terminal repeat region. Analysis of the fractions from the glycerol gradients show that the 72,000 dalton protein is associated to the binding species (94,000 dalton receptor protein) in about equimolar amounts. Analysis of the molybdate-stabilized non-activated receptor complex using monoclonal antibodies raised against the 94,000 dalton receptor protein indicates that the molybdate-stabilized complex is a hetero-oligomer. The hetero-oligomer consists of only one molecule of the 94,000 dalton receptor protein, in association with other non-steroid-binding proteins.  相似文献   

11.
Polyclonal antibodies were generated against two synthetic peptides corresponding to sequences from the DNA-binding domain of steroid receptors. The sequence for peptide 1 (13 amino acids) lies between the two putative metal-binding loops of the conserved cysteine region while the sequence for peptide 2 (12 amino acids) lies within one loop. Peptide antibodies were generated by injecting rabbits with peptide conjugated to bovine serum albumin. By Western blot analysis, antibodies to peptide 2 recognized chick and human progesterone receptor and human glucocorticoid receptor, but peptide 1 antibodies did not. No cross-reactivity with native chick progesterone receptor was detected with either anti-peptide. These findings suggest that the epitopes for peptide 2 antibodies, and possibly for peptide 1 antibodies, are inaccessible to antibody in the native receptor.  相似文献   

12.
The Ah receptor regulates induction of cytochrome P450IA1 (aryl hydrocarbon hydroxylase) by "3-methylcholanthrene-type" compounds and mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons. Hepatic Ah receptor from untreated rodents is localized in the cytosol and has an apparent molecular mass of 250 to 300 kDa. This large form can be dissociated into a smaller ligand-binding subunit upon exposure to high ionic strength. The Ah receptor displays many structural similarities to the receptors for steroid hormones. Two non-ligand-binding proteins have been identified to be associated with the cytosolic forms of the steroid hormone receptors. The first is a 90-kDa heat shock protein (hsp 90); the second is a 59-kDa protein (p59) of unknown function. The cytosolic Ah receptor ligand-binding subunit previously has been shown to be associated with hsp 90. In the present study, we used a monoclonal antibody, KN 382/EC1, generated against the 59-kDa protein which is associated with rabbit steroid receptors to determine if p59 also is a component of the large cytosolic Ah receptor complex. Cytosolic forms of rabbit progesterone receptor, glucocorticoid receptor, and Ah receptor were analyzed by velocity sedimentation on sucrose gradients under low-ionic-strength conditions and in the presence of molybdate. Progesterone receptor from rabbit uterine cytosol and glucocorticoid receptor from rabbit liver each had a sedimentation coefficient of approximately 9 S. In the presence of KN 382/EC1 antibody the progesterone receptor and the glucocorticoid receptor both underwent a shift in sedimentation to a value of approximately 11 S. The increase in sedimentation velocity is an indication that the receptor-protein complexes are interacting with the antibody. Under low-ionic-strength conditions the Ah receptors from rabbit uterine cytosol and liver cytosol had a sedimentation coefficient of approximately 9 S. However, in contrast to the steroid receptors, the Ah receptor showed no change in its sedimentation properties in either tissue in the presence of KN 382/EC1, indicating that the antibody is not interacting with the Ah receptor. Multimeric Ah receptor complexes that were chemically crosslinked still did not show any interaction with KN 382/EC1. These data indicate that the 59-kDa protein either is not associated with the Ah receptor or is present in an altered form which the antibody cannot recognize.  相似文献   

13.
Seven antisera against the glucocorticoid receptor (GR), raised in different rabbits immunized with highly purified (in case of five rabbits apparently homogeneous) preparation of GR from rat liver cytosol, were compared concerning titer and cross-reactivity. The titers of protein A-purified antisera (10 mg/ml) were in the range 1:100-1:320 as measured by enzyme-linked immunosorbent assay, ELISA, (defined as the dilution giving 50% of maximum absorbance). All seven antisera bound to the rat GR with a Stokes radius of 6.1 nm, but no antiserum reacted with the proteolytically induced steroid binding domain with Stokes radius 3 nm. However, the antigenic determinant(s) of the non-ligand-binding domain(s), split off from the steroid binding domain, is preserved following digestion with alpha-chymotrypsin or trypsin, respectively, since immunoactivity is still detectable by ELISA. Only two of four antisera tested cross-reacted with the GR from human lymphocytes. The same two antisera cross-reacted with chick embryo liver GR. Four out of four antisera tested cross-reacted with mouse liver GR as well as with rabbit lung GR. For these antisera, antibody binding to the GR prior to steroid- or DNA-binding did not influence the ability of the GR to interact with the ligand or DNA-cellulose, respectively. No difference regarding avidity of the antisera for activated or non-activated GR was observed. Furthermore, none of the antisera tested cross-reacted with the estrogen, progestin, androgen or mineralocorticoid receptors in rat. These findings indicate that the antisera from different rabbits raised against the same antigen all react with a certain domain of the rat GR, but show species differences as well as receptor class specificity.  相似文献   

14.
The Hsp70-interacting protein Hip has been identified as a transient participant in the assembly of both glucocorticoid (GR) and progesterone receptor complexes. Although it has been difficult to identify a physiological role for Hip, it is believed to have intrinsic chaperoning properties and has been identified as a potential anti-apoptotic target of Granzyme B. In vitro assays have provided evidence that Hip may interact with GR complexes in an Hsp70 independent manner and can enhance the function of GR in hormone based reporter assays. In this study, a cDNA for human Hip was used in mutational analysis to map Hip function to critical structural elements. A single amino acid substitution (L211S) resulted in a loss of Hip function. This mutation also appears to disrupt the interaction of Hip with Hsp70 in vitro. Failure to recover Hip-L211S constructs in co-immunoprecipitation assays with an Hsp70 monoclonal antibody suggests that the mutation is unlikely to result in a misfolded substrate.  相似文献   

15.
A combination of the gel retardation assay and interference by hydroxyl radical modification (missing nucleoside technique) was used to analyze the interaction of the glucocorticoid receptor (GR) with various glucocorticoid responsive elements (GRE). Short oligonucleotides containing the 15-bp GRE and 1 to 3 flanking base pairs on each side, are bound with very low affinity. The same GREs, when positioned in the center of a large DNA fragment (40-50 bp), show high affinity for the receptor. However, when the GRE is positioned at the border of a 54-bp fragment, the affinity of the GR for the GRE decreases markedly. The DNA binding affinity increases linearly with each added flanking base pair and optimal binding is observed with 8-10 flanking bp. Thus, the nonconserved DNA sequences flanking the GRE contribute significantly to the free energy of receptor binding to DNA. Using larger DNA fragments (greater than 100 bp) and a smaller form of the receptor (40 kD), two retarded complexes are found that correspond to monomeric and homodimeric receptor DNA complexes. The DNA-binding domain of the GR (20 kD), expressed in bacteria, binds to the GRE as a monomer as well as a dimer and can form heterodimers with the native 94-kD GR. Insertion or deletion of one single base pair between the two halves of the GRE reduces the affinity for the homodimeric form of the native GR, and inhibits the function of the GRE in gene transfer experiments, suggesting that a dimer of the GR is the functional entity that binds to the GRE.  相似文献   

16.
A Safran  D Neumann    S Fuchs 《The EMBO journal》1986,5(12):3175-3178
Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms.  相似文献   

17.
The glucocorticoid receptor (GR) forms part of a multiprotein complex consisting of chaperones and proteins active in glucocorticoid signaling and other pathways. By immunoaffinity purification of GR, followed by Edman sequencing and Western blotting, we identified the FMS-like tyrosine kinase 3 (Flt3) as a GR-interacting protein in rat liver and hepatoma cells. Flt3 interacts with both non-liganded and liganded GR. The DNA-binding domain of GR is sufficient for Flt3 interaction as shown by GST-pull down experiments. Studies of the effects of Flt3 and its ligand FL in glucocorticoid-driven reporter-gene assays in Cos7 cells, show that co-transfection with Flt3 and FL potentiates glucocorticoid effects. Treatment with FL had no effect on GR location and Dex induced translocation of GR was unaffected by FL. In summary, GR and Flt3 interact, affecting GR signaling. This novel cross-talk between GR and a hematopoietic growth factor might also imply glucocorticoid effects on Flt3-mediated signaling.  相似文献   

18.
19.
We have developed specific antibodies directed against two synthetic peptides corresponding to defined sequences in the D2 dopamine receptor. One peptide is from a region that is present only in the 'long' isoform of the receptor, whereas the other is from a region that is common to both. These antibodies are able to recognize the native receptor as judged by immunocytochemical staining of cells transfected with dopamine receptor DNA. One antibody was shown to be specific for the 'long' form of the receptor and reacts only with cells transfected with the 'long' DNA subtype and not with those transfected with the 'short' DNA subtype. This recognition is specific and can be inhibited by the corresponding free peptide and not by a non-relevant peptide.  相似文献   

20.
The sex steroid-binding protein (SBP) receptor was solubilized from the membranes of human premenopausal endometrium with the zwitterionic detergent CHAPS. The binding activity of the soluble receptor was studied, allowing it to interact with [125I]SBP and precipitating the complex with polyethylene glycol 8,000. The interaction of SBP with the soluble receptor was specific, saturable, and at high affinity. Indeed, the specific binding was definitely improved on the solubilized form of the receptor. The effect exerted by sex steroids on the interaction of SBP with receptor was also examined on both the soluble and membrane-bound forms. At physiologic doses (10(-8) M) estradiol inhibits the binding at a significant extent on the soluble receptor, but not on membrane-bound form. The dose of estradiol required to significantly inhibit the SBP-specific binding was dependent on the form of receptor. In membrane-bound receptor the inhibiting dose of estradiol was higher than its physiologic concentration. Thus, it is likely that, while soluble receptor cannot recognize the complex steroid-SBP, membrane-bound receptor can interact both with "unliganded" SBP and with the estradiol-SBP complex (but not with androgen-SBP complexes) in an estrogen-dependent tissue like human endometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号