首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated cDNA clones for mouse type IV procollagen from a library constructed from total poly A+RNA of 13.5 day mouse embryo parietal endoderm (PE) cells. In Northern analysis these clones hybridise to a 6.8 kb RNA which is abundant in embryonic PE cells and in differentiated F9 teratocarcinoma cells. Hybrid selection and in vitro translation of the cDNA specific mRNA produced a single polypeptide of Mr = 165 000. This polypeptide was specifically immunoprecipitated with mouse type IV procollagen antisera and comigrated on SDS-gel electrophoresis with one of the two in vitro synthesised chains of type IV procollagen. Undifferentiated F9 teratocarcinoma cells can be induced by retinoic acid and dibutyryl cAMP to differentiate in vitro into endoderm-like cells which resemble mouse PE cells in synthesising large amounts of basement membrane proteins, including type IV procollagen. Here we show, using one of the cDNA clones as a probe for type IV procollagen, that an increase in cellular concentration of type IV procollagen mRNA occurs within 24 to 48 hours of induction, reaching a constant high level by 72 hours.  相似文献   

2.
Transformation of the human embryonic lung fibroblast line, WI-38, with simian virus 40 (SV40) results in inactivation of the type I procollagen genes. No type I collagen or procollagen mRNA is detected in these transformed cells, as determined by polyacrylamide gel electrophoresis. Analysis of the methylation patterns of these genes showed the type I procollagen genes to be hypermethylated at certain cytosine residues in the transformed cells. However, several of the cytosine residues were methylated in the normal cells where these genes are expressed. These methylation patterns can be altered by treatment of the cells with 5-azacytidine or 5-azadeoxycytidine, but without a resultant activation of the type I procollagen genes. These results show that demethylation alone is not sufficient for gene activation, but that other signals are also required.  相似文献   

3.
R H Kramer  G M Fuh  M A Karasek 《Biochemistry》1985,24(25):7423-7430
Cultured microvascular endothelial cells isolated from human dermis were examined for the synthesis of basement membrane specific (type IV) collagen and its deposition in subendothelial matrix. Biosynthetically radiolabeled proteins secreted into the culture medium were analyzed by sodium dodecyl sulfate gel electrophoresis after reduction, revealing a single collagenous component with an approximate Mr of 180 000 that could be resolved into two closely migrating polypeptide chains. Prior to reduction, the 180 000 bands migrated as a high molecular weight complex, indicating the presence of intermolecular disulfide bonding. The 180 000 material was identified as type IV procollagen on the basis of its selective degradation by purified bacterial collagenase, moderate sensitivity to pepsin digestion, immunoprecipitation with antibodies to human type IV collagen, and comigration with type IV procollagen purified from human and murine sources. In the basement membrane like matrix elaborated by the microvascular endothelial cells at their basal surface, type IV procollagen was the predominant constituent. This matrix-associated type IV procollagen was present as a highly cross-linked and insoluble complex that was solubilized only after denaturation and reduction of disulfide bonds. In addition, there was evidence of nonreducible dimers and higher molecular weight aggregates of type IV procollagen. These findings support the suggestion that the presence of intermolecular disulfide bonds and other covalent interactions stabilizes the incorporation of the type IV procollagen into the basement membrane matrix. Cultured microvascular endothelial cells therefore appear to deposit a basal lamina-like structure that is biochemically similar to that formed in vivo, providing a unique model system that should be useful for understanding microvascular basement membrane metabolism, especially as it relates to wound healing, tissue remodeling, and disease processes.  相似文献   

4.
A proband with arterial ruptures and skin changes characteristic of the type IV variant of Ehlers-Danlos syndrome was found to have a single-base mutation in the type III procollagen gene, which converted the codon for glycine at amino acid position 1018 to a codon for aspartate. (Amino acid positions are numbered by the standard convention in which the first glycine of the triple-helical domain of an alpha chain is number 1. The numbers of positions in the alpha 1(III) chains can be converted to positions in the human pro alpha(III) chain by adding 167.) Nucleotide sequencing of overlapping PCR products in which the two alleles were distinguished demonstrated that the mutation of glycine 1018 was the only mutation that changed the primary structure of type III procollagen. The glycine substitution markedly decreased the amount of type III procollagen secreted into the medium by cultured skin fibroblasts from the proband. It is surprising that the same mutation was found in about 94% of the peripheral blood leukocytes from the proband's asymptomatic 72-year-old mother. Other tissues from the mother contained the mutated allele; it was present in 0%-100% of different samples of hair cells and in about 40% of cells from the oral epithelium. Therefore, the mother was a mosaic for the mutation. Since the mutated allele was present in cells derived from all three germ layers, the results indicated that the mutation arose by the late blastocyst stage of development. The results also indicate that assays of blood leukocytes do not always reveal mosaicism or predict phenotypic involvement of tissues, such as blood vessels, that are derived from the same embryonic cells as are leukocytes.  相似文献   

5.
Epithelial cells from human post-partal amniotic membrane in primary culture secreted two major matrix proteins, fibronectin and procollagen type III, and small amounts of laminin and basement membrane collagens (types IV and AB). Identified in the culture medium by immunoprecipitation, these components were located by immunofluorescence to a pericellular matrix beneath the cell monolayer. Deposition of fibronectin, laminin and procollagen type III occurred under freshly seeded spreading cells. In the matrix of confluent cultures, fibronectin and procollagen type III had a moss-like distribution. Matrix laminin had predominantly a punctate pattern and was sometimes superimposed on the fibronectin-procollagen type III matrix. In the human amniotic membrane in vivo, laminin, type IV collagen and fibronectin were located to a narrow basement membrane directly beneath the epithelial cells. Fibronectin and procollagen type III were detected in the underlying thick acellular compact layer. Fibronectin secreted by amniotic epithelial cells is a disulfide-bonded dimer of slightly higher apparent molecular weight (240 kilodaltons) than fibronectins isolated from human plasma or fibroblast cultures. Laminin was detected in small amounts in the culture medium. Laminin antibodies precipitated a polypeptide of about 400 kilodaltons, and two polypeptides with slightly faster mobility in electrophoresis under reducing conditions than fibronectin. Procollagen type III was by far the major collagenous protein whereas little or no production of procollagen type I could be observed. Basement membrane collagens were identified as minor components in the medium by immunoprecipitation (type IV) or chemical methods (αA and αB chains).  相似文献   

6.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

7.
Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.  相似文献   

8.
Biosynthesis of type IV collagen by cultured rat Schwann cells   总被引:15,自引:10,他引:5       下载免费PDF全文
We have obtained evidence that rat Schwann cells synthesize and secrete type IV procollagen. Metabolic labeling of primary cultures of Schwann cells plus neurons and analysis by SDS PAGE revealed the presence of a closely spaced pair of polypeptides in the medium of these cultures that (a) were susceptible to digestion by purified bacterial collagenase, (b) co-migrated with type IV procollagen secreted by rat parietal endoderm cells, and (c) were specifically immunoprecipitated by antibodies against mouse type IV collagen. Limited pepsin digestion of metabolically labeled medium or cell layers produced a pepsin- resistant fragment characteristic of pro-alpha 1(IV) chains. Removal of neuronal cell bodies from the cultures immediately before labeling did not reduce the amount of type IV procollagen detected in the medium. This indicated that Schwann cells, not neurons, were responsible for synthesis of type IV procollagen. We believe type IV procollagen is a major constituent of the Schwann-cell extracellular matrix based upon (a) its presence in a detergent-insoluble matrix preparation, (b) its presence in the cell layer of the cultures in a state in which it can be removed by brief treatment with bacterial collagenase or trypsin, and (c) positive immunofluorescence of Schwann cell-neuron cultures with anti-type-IV collagen antibodies. Secretion of type IV procollagen was substantially reduced when Schwann cells were maintained in the absence of neurons. This observation may account for the previously reported finding that Schwann cells assemble a basal lamina only when co-cultured with neurons (Bunge, M. B., A. K. Williams, and P. M. Wood, 1982, Dev. Biol., 92:449).  相似文献   

9.
The present paper describes how epithelial cells, cultured from bovine anterior lens capsule explants, synthesize and secrete procollagen type IV polypeptide chains alpha 1(IV) and alpha 2(IV). Metabolic labeling of these cells with [14C]proline for different time intervals and subsequent analysis by SDS/polyacrylamide gel electrophoresis revealed the presence of two polypeptide chains with apparent molecular masses of 180 kDa and 170 kDa. The procollagens were bacterial-collagenase-sensitive and were specifically immunoprecipitated by antibodies raised against the 7S domain of type IV collagen. Type IV procollagen poly(A)-rich RNA was isolated from cultured lens capsule cells and translated in a reticulocyte lysate cell-free system. Two polypeptides with apparent molecular masses of 152 kDa and 145 kDa were identified as procollagen type IV unmodified chains by gel electrophoresis, collagenase digestion and specific immunoprecipitation. During experiments in which cells were labeled in the presence of alpha, alpha'-bipyridyl, type IV procollagen appeared as one major band comigrating with a 145 kDa polypeptide on SDS-gel electrophoresis.  相似文献   

10.
Hsp47 is a molecular chaperone that specifically recognizes procollagen in the endoplasmic reticulum. Hsp47-null mouse embryos produce immature type I collagen and form discontinuous basement membranes. We established Hsp47-/- embryonic stem cell lines and examined formation of basement membrane and production of type IV collagen in embryoid bodies, a model for postimplantation egg-cylinder stage embryos. The visceral endodermal cell layers surrounding Hsp47-/- embryoid bodies were often disorganized, a result that suggested abnormal function of the basement membrane under the visceral endoderm. Rate of type IV collagen secretion by Hsp47-/- cells was fourfold lower than that of Hsp47+/+ cells. Furthermore, type IV collagen secreted from Hsp47-/- cells was much more sensitive to protease digestion than was type IV collagen secreted from Hsp47+/+ cells, which suggested insufficient or incorrect triple helix formation in type IV collagen in the absence of Hsp47. These results indicate for the first time that Hsp47 is required for the molecular maturation of type IV collagen and suggest that misfolded type IV collagen causes abnormal morphology of embryoid bodies.  相似文献   

11.
To investigate the molecular mechanism of intracellular degradation of type I collagen in normal corneal endothelial cells (CEC), we studied the role of prolyl 4-hydroxylase (P4-H) and protein disulfide-isomerase (PDI; the beta subunit of P4-H) during procollagen I biosynthesis. When the subcellular localization of P4-H and PDI was determined, P4-H demonstrated a characteristic diffuse endoplasmic reticulum (ER) pattern, whereas PDI showed a slightly more restricted distribution within the ER. When colocalization of procollagen I with the enzymes was examined, procollagen I and PDI showed a large degree of colocalization. P4-H and procollagen I were predominantly colocalized at the perinuclear site. When colocalization of type IV collagen with PDI and P4-H was examined, type IV collagen was largely colocalized with PDI, which showed a wider distribution than type IV collagen. Type IV collagen is similarly colocalized with P4-H, except in some perinuclear sites. The colocalization profiles of procollagen I with both PDI and P4-H were not altered in cells treated with alpha,alpha'-dipyridyl compared to those of the untreated cells. The underhydroxylated type IV collagen demonstrated a colocalization profile with PDI similar to that observed with procollagen I, while the underhydroxylated type IV collagen was predominantly colocalized with P4-H at the perinuclear sites. Immunoblot analysis showed no real differences in the amounts of the beta subunit/PDI and the catalytic alpha subunit of P4-H in CEC compared to those of corneal stromal fibroblasts (CSF). When protein-protein association was determined, procollagen I was associated with PDI much more in CEC than it was in CSF, whereas type IV collagen showed no differential association specificity to PDI in both cells. Limited proteolysis of the newly synthesized intracellular procollagen I with pepsin showed that procollagen I in CEC was degraded by pepsin, whereas CSF contained type I collagen composed of alpha1(I) and alpha2(I). These findings suggest that procollagen I synthesized in CEC is not in triple helical conformation and that the improperly folded procollagen I may be preferentially associated with PDI before targeting to the intracellular degradation.  相似文献   

12.
13.
14.
Bleomycin is a chemotherapeutic agent sometimes associated with pulmonary fibrosis and skin lesions in patients undergoing treatment. We examined the mechanisms of increased collagen deposition on bleomycin-induced fibrosis by incubating human lung and skin fibroblast cultures with [14C]proline; the synthesis of [14C]hydroxyproline relative to DNA or cell protein was taken as an index of procollagen formation. Procollagen synthesis by lung cells in the presence of 0.1 and 1.0 microgram/ml bleomycin was significantly increased and similar results were obtained with skin fibroblasts. The relative synthesis of genetically distinct types of collagen was measured by isolating the newly synthesized type I and type III procollagens by DEAE-cellulose chromatography. The proportion of type III procollagen of total newly synthesized procollagen in control lung fibroblast cultures was 17.4 +/0 0.6% (mean +/- S.E.) while the corresponding value in cells incubated in 1 microgram/ml bleomycin was 12.5 +/- 0.6% (n = 6, P < 0.01). Similar results were obtained when the ratios of newly synthesized type I and type III collagens were estimated by interrupted polyacrylamide disc gel electrophoresis in sodium dodecyl sulfate after a limited proteolytic digestion with pepsin. The results indicate that the increased procollagen synthesis induced by bleomycin in fibroblast cultures is predominantly directed towards the synthesis of type I procollagen.  相似文献   

15.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

16.
In vitro synthesis of type IV procollagen   总被引:3,自引:0,他引:3  
Total RNA was isolated from parietal endoderm cells of 131/2-day mouse embryos that synthesize large amounts of type IV procollagen. In vitro translation of this RNA in the reticulocyte lysate supplemented with a ribonuclease inhibitor yielded two equally prominent polypeptides of Mr = 165,000 and 168,000, immunoprecipitable with anti-mouse type IV collagen serum. The Mr = 165,000 polypeptide was shown by one-dimensional peptide mapping to represent an unmodified chain of type IV procollagen. The Mr = 168,000 polypeptide, the in vitro synthesis of which was barely detectable in the absence of a ribonuclease inhibitor, most likely represents the other genetically distinct chain of type IV procollagen. Similar results to those described were also obtained using poly(A) + RNA prepared from murine F9 embryonal carcinoma cells induced to differentiate in vitro into parietal endoderm.  相似文献   

17.
Subunit structure of wheat germ agglutinin   总被引:6,自引:0,他引:6  
Cells isolated by enzymic digestion of embryonic tendon were incubated under N2 so that they synthesized and accumulated the unhydroxylated form of procollagen which is known as protocollagen and which is largely comprised of pro-α chains linked by interchain disulfide bonds. The cells were then exposed to O2 so that the intracellular protocollagen was hydroxylated and secreted as procollagen. When the hydroxylation was allowed to proceed at 31° or 34°, the procollagen secreted into the medium was triple-helical but its hydroxyproline content was less than two-thirds and its hydroxylysine content was less than half the control. Even when the hydroxylation was allowed to occur at 37°, the procollagen secreted by the cells was under-hydroxylated by about 15% in terms of its hydroxyproline content and about 45% in terms of its hydroxylysine content. The results may have consequences for collagen synthesis by tendons and similar tissues in vivo, since temporary anoxia in such tissues may well lead to the synthesis of a less stable procollagen or to fibers of decreased tensile strength.  相似文献   

18.
Bleomycin treatment of primary chick skin fibroblasts and chick lung fibroblasts resulted in a selective dose-dependent increase of cell layer procollagen synthesis. Solid support hybridization of total cellular RNA to 32P-labeled pro-alpha 1(I) and pro-alpha 2(I) cDNAs did not indicate an increase of total cellular procollagen type I mRNAs in bleomycin-treated cells. However, bleomycin treatment of chick skin fibroblasts causes a redistribution of procollagen type I mRNAs within the nuclear, cytoplasmic, and polysomal subcellular fractions. Both the nuclear and cytoplasmic procollagen type I mRNAs are significantly decreased in concentration after bleomycin administration. In contrast, the polysomal procollagen type I mRNAs are significantly increased in both chick skin and lung fibroblasts treated with bleomycin. Administration of dexamethasone to bleomycin-treated fibroblasts resulted in a reversal of the bleomycin-induced increase in cell layer procollagen synthesis. The increased amounts of polysomal procollagen type I mRNAs in bleomycin-treated cells were also reduced by subsequent administration of dexamethasone. These data indicate that bleomycin treatment of chick skin and chick lung fibroblasts results in a specific increase in procollagen synthesis in the cell layer which is mediated by elevated levels of polysomal type I procollagen mRNAs via a repartitioning of these mRNAs within the fibroblast. Furthermore, dexamethasone reverses the bleomycin-induced elevations of both cell layer procollagen synthesis and polysomal type I procollagen mRNAs.  相似文献   

19.
Fibroblasts from two lethal variants of osteogenesis imperfecta were shown to synthesize increased amounts of type IV procollagen. Previous studies established that one of these variants had a non-functional allele for the pro alpha 2 chain of type I procollagen, whereas the other pro alpha 2(I) allele contained a mutation leading to synthesis of shortened pro alpha 2(I) chains. In the two variants, the relative level of mRNA for pro alpha 1(IV) was 31 and 42% of the level of mRNA for pro alpha 1(I) chains. A value of less than 2% was found for a third lethal and four non-lethal variants of osteogenesis imperfecta. Immunofluorescent staining of fibroblasts from the two variants synthesizing increased amounts of type IV procollagen indicated that a homogeneous population of cells synthesized both type IV and type I procollagen. The results suggest that mutations in the type I procollagen genes that result in osteogenesis imperfecta can be associated with increased expression of the genes for type IV procollagen.  相似文献   

20.
Antibodies to type I and type III procollagens were raised in rabbits and were made monospecific by chromatography on collagen and procollagen affinity columns. The antibodies were determined to be monospecific by the direct enzyme-linked immunosorbent assay and the enzyme-linked immunosorbent assay inhibition assay. Rats were treated with various doses of triamcinolone diacetate, pulse-labeled with radioactive proline for 20 min, and the procollagens were precipitated with procollagen antibodies. The degree of inhibition of procollagen type I and type III synthesis to corticosteroid treatment was the same. This coordinate effect of glucocorticoids on the synthesis of the two procollagens was reversible, dose-dependent, time-dependent, and observed in lung as well as in skin. These data indicate that glucocorticoids coordinately regulate the synthesis of type I and type III procollagen in skin and lung to the same extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号