首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal compounds were tested for their ability to induce chromosomal aberrations in cultured mammalian cells. Chromosomal aberrations were induced by the application of some Cr, Mn and Ni compounds. Among 6-valent Cr compounds, K2Cr2O7 and CrO3 induced high levels of aberrations, at rates which were similar for Cr-equivalent doses. The perchromate compounds were more efficient in producing chromosomal aberrations than was a chromate compound, K2CrO4. A 3-valent Cr compound, Cr2(SO4)3, was less toxic and failed to induce a demonstrable increase in chromosomal aberrations. KMnO4 induced aberrations, but at a low rate. As to Ni compounds, NiCl2 and (CH3COO)2Ni induced few aberrations. Administration of K2Ni(CN)4 induced only gaps. NiS induced a low but definite increase in chromosomal aberrations. The rate of these aberrations increased with an increase in treatment time from 24 to 48 h, indicating a time-dependent increase in the hereditable toxicity of metal compounds. CdCl2 and HgCl2 were somewhat toxic, but failed to induce chromosomal aberrations in the present study.  相似文献   

2.
Characteristics of the chromosomal aberrations diagnosed in 959 prenatal tests in the II trimester of pregnancy is presented. Chromosomal aberrations were diagnosed in 33 tests (3.4%). Twenty one out of these aberrations (2.2%) were of labile character. Six aberrations resulted from the parental segregation, translocation or chromosomal inversion. In 12 cases fetus inherited stable aberration from one of parents. It amounted to 1.2% of all tested cases. Chromosomal aberrations were diagnosed in 2.7% cases tested due to the risk related to the mother's age. Half of them was trisomy of chromosome 21. Chromosomal aneuploidy in the progeny of families with a child with the same abnormality was diagnosed in 1.6% of cases. Chromosomal mosaicism was diagnosed in 2.2% of cases including 0.2% of cases with true mosaicism and 1.98% of cases with pseudomosaicism. Incidence and type of the diagnosed chromosomal aberrations coincided with foreseen aberrations for each group of the genetic risk.  相似文献   

3.
The effect of γ-radiation on the cytogenetic parameters of root meristem cells of onion seedlings was studied in laboratory experiments (Allium-test). An increase in the overall frequency of chromosomal aberrations and micronucleus frequencies in seedling cells at low γ-radiation doses (≤0.1 Gy) was detected for the first time. At a maximum absorbed dose of 13 Gy, chromosomal aberrations were detected in the majority of cells in the anaphase and telophase stages of the cell cycle, and the number of cells with multiple aberrations increased. The main contribution to the overall frequency of chromosomal aberrations, in addition to multiple aberrations, is made by the bridge-type aberrations, fragments, and lagging chromosomes. The data obtained allow using the cytogenetic indices of Allium cepa seedlings to assess the biological effects of lowdose γ-radiation.  相似文献   

4.
The induction of chromosomal aberrations in a superoxide-generating system using xanthine oxidase and hypoxanthine was investigated in cultured Chinese hamster cells. The production of chromosomal aberations in this system was inhibited by the addition of cytochrome C. This finding indicates that the generation of superoxide was the primary requirement for induction of chromosomal aberrations. On the other hand, superoxide dismutase showed no effect on the frequency of chromosomal aberrations, whereas catalase was effective in preventing the aberrations. It is conceivable, therefore, that the induction of chromosomal aberrations in the superoxide-generating system may be directly or indirectly due to hydrogen peroxide formed in the cultured medium as a result of the spontaneous dismutation reaction of superoxide.  相似文献   

5.
Structural chromosome aberrations were evaluated in peripheral blood samples obtained from three populations exposed to partial-body irradiation. These included 143 persons who received radiotherapy for enlarged thymus glands during infancy and 50 sibling controls; 79 persons irradiated for enlarged tonsils and 81 persons surgically treated for the same condition during childhood; and 77 women frequently exposed as young adults to fluoroscopic chest X rays during lung collapse treatment for tuberculosis (TB) and 66 women of similar ages treated for TB with other therapies. Radiation exposures occurred 30 and more years before blood was drawn. Doses to active bone marrow averaged over the entire body were 21, 6, and 14 cGy for the exposed thymic, tonsil, and TB subjects, respectively. Two hundred metaphases were scored for each subject, and the frequencies of symmetrical (stable) and asymmetrical (unstable) chromosome aberrations were quantified in 97,200 metaphases. Cells with stable aberrations were detected with greater frequency in the irradiated subjects compared with nonirradiated subjects in all three populations, and an overall test for an association between stable aberrations and partial-body ionizing radiation was highly significant (P less than 0.001). We found no evidence that radiation-induced aberrations varied by age at exposure. These data show that exposure of children or young adults to partial-body fractionated radiation can result in detectable increased frequencies of stable chromosome aberrations in circulating lymphocytes 30 years later, and that these aberrations appear to be informative as biological markers of population exposure.  相似文献   

6.
L I Lebedeva 《Genetika》1982,18(9):1462-1467
The frequency of chromosome aberrations induced by UV light at wavelengths 254, 265, 280 and 302 using doses 2-10 J/m2 in the primary culture of mouse embryonic fibroblasts during the G1, S and G2 phases was studied at metaphase of the first mitosis. Two classes of chromosome aberrations were distinguished. These classes differ in the time intervals of the final establishment of the cell cycle. The aberrations of the class 1 emerge before the beginning of prometaphase (possibly, at interphase). Formation of the second class aberrations is completed during the metaphase. It is shown that the class 1 aberrations occur with almost the same rate in approx. 7% of cells, irrespective of the cell cycle, irradiation dose and wavelength. It is suggested that these aberrations arise as a result of indirect UV action on the chromosome structures; the mechanism of their emergence does not depend on DNA replication. The class 2 aberrations do not appear after UV irradiation during the post-DNA-synthetic G2 phase of the cell cycle. However, after UV treatment at the G1 or S periods, they represent the majority of aberrations and their rate increases almost monotonously with the radiation dose. The UV action spectrum for these aberrations coincides with the adsorption spectrum of thymidine and the action spectrum for DNA cross-links. Thus, it may be inferred that formation of DNA cross-links following thymine dimerization is the first step in formation of UV-induced aberrations of the class 2. The passage of cells through DNA replication is a very important step in the process of their emergence.  相似文献   

7.
Proliferation kinetics and spontaneous yield of chromosomal aberrations phytohemagglutinin (PHA)-responsive peripheral blood lymphocytes were studied from blood samples collected from 45 individuals in 4 different synthetic media. Except for a significant difference for Eagle's MEM and RPMI 1640, the other media did not show difference for the yield of chromatid or chromosome type of aberrations. Differences were however noticed in the proliferation kinetics (mitotic and proliferative rate indices) of cells among the media used. The study indicated that (i) the intrinsic properties of media which influence proliferation rate and yield of chromosomal aberrations are independent of each other as higher proportion of first division cells do not correspond with higher frequency of chromosomal aberrations, (ii) the amount of free-radical scavengers present in the medium, apart from the genetic make-up of the individuals, may contribute to the spontaneous yield of chromosomal aberrations and (iii) RPMI 1640 medium, which showed higher transformation and faster cycling rate for the lymphocytes, may be considered as medium of choice for analysing two main cytogenetic end-points, chromosomal aberrations and sister chromatid exchanges (SCEs).  相似文献   

8.
Y Matsuda  T Yamada  I Tobari 《Mutation research》1985,148(1-2):113-117
The induction of chromosome aberrations in eggs of mice fertilized with X-irradiated sperm was performed by using an in vitro fertilization technique. Capacitated mature sperm was irradiated with various doses of X-rays and cytological analysis of the first cleavage metaphase of in vitro fertilized eggs was made. The frequencies of chromosome aberrations increased exponentially with dose and the dose-response relationship for overall breaks fitted well to a quadratic equation. The chromosome aberrations were mainly chromosome-type (82.1%), and the majority of aberrations were fragments.  相似文献   

9.
Chromosomal instability is the major form of genomic instability in cancer cells. Amongst various forms of chromosomal instability, pericentromeric or centromeric instability remains particularly poorly understood. In the present study, we found that pericentromeric instability, evidenced by dynamic formation of pericentromeric or centromeric rearrangements, breaks, deletions or iso-chromosomes, was a general phenomenon in human cells immortalized by expression of human papillomavirus type 16 E6 and E7 (HPV16 E6E7). In particular, for the first time, we surprisingly found a dramatic increase in the proportion of pericentromeric chromosomal aberrations relative to total aberrations in HPV16 E6E7-expressing cells 72 h after release from aphidicolin (APH)-induced replication stress, with pericentromeric chromosomal aberrations becoming the predominant type of structural aberrations (∼70% of total aberrations). In contrast, pericentromeric aberrations accounted for only about 20% of total aberrations in cells at the end of APH treatment. This increase in relative proportion of pericentromeric aberrations after release from APH treatment revealed that pericentromeric breaks induced by replication stress are refractory to prompt repair in HPV16 E6E7-expressing epithelial cells. Telomerase-immortalized epithelial cells without HPV16 E6E7 expression did not exhibit such preferential pericentromeric instability after release from APH treatment. Cancer development is often associated with replication stress. Since HPV16 E6 and E7 inactivate p53 and Rb, and p53 and Rb pathway defects are common in cancer, our finding that pericentromeric regions are refractory to prompt repair after replication stress-induced breakage in HPV16 E6E7-expressing cells may shed light on mechanism of general pericentromeric instability in cancer.  相似文献   

10.
R Rathenberg 《Humangenetik》1975,29(2):135-140
NMRI mice were treated with single doses of cyclophosphamide (Cytoxan) and spermatogonia were analysed for chromosome aberrations at various time intervals after treatment. The maxima of aberrations were found 24 hrs p.i. Chromatid type aberrations were observed exclusively. About half of the aberrations consisted of chromatid interchanges, 92% of which exchanging short arm fragments close to the centromeric region. The lack of meiotic multivalents in diakinesis-metaphase I after treatment of spermatogonia stem cells with cyclophosphamide in the study of Leonard and Linden (1972) is discussed.  相似文献   

11.
Restriction endonucleases (REs) are able to induce chromosomal aberrations in Chinese hamster ovary (CHO) cells. The G1 phase of the cell cycle seems to be especially sensitive for the induction of chromosomal aberrations by REs. The different capacities of REs to induce chromosomal aberrations are probably correlated with the number of recognition sites in the genome.  相似文献   

12.
Peripheral blood lymphocytes were irradiated in vitro with (213)Bi alpha particles at doses of 0, 10, 20, 50, 100, 200 and 500 mGy. Chromosome analysis was performed on 47-h cultures using single-color fluorescence in situ hybridization (FISH) to paint chromosomes 1, 3 and 5. The whole genome was analyzed for unstable aberrations to derive aberration frequencies and determine cell stability. The dose response for dicentrics was 33.60 +/- 0.47 x 10(-2) per Gy. A more detailed analysis revealed that the majority of aberrations scored as dicentrics were part of complex/multiple aberrations, with the proportion of cells containing complexes increasing with dose. Cells containing aberrations involving painted chromosomes (FISH aberrations) were further classified according to cell stability and complexity. The majority of cells with FISH aberrations were unstable. The proportion of aberrant FISH cells with complex/multiple aberrations ranged from 56% at 10 mGy to 89% at 500 mGy. A linear dose response for genomic frequencies of translocations in stable cells fitted the data from 0 to 200 mGy with a dose response of 7.90 +/- 0.98 x 10(-2) per Gy, thus indicating that they are likely to be observed in peripheral blood lymphocytes from individuals with past or chronic exposure to high-LET radiation. Comparisons with the dose response for low-LET radiation suggest an RBE of 13.6 for dicentrics in all cells and 3.2 for translocations in stable cells. Since stochastic effects of radiation are attributable to genetic changes in viable cells, translocations in stable cells may be a better measure when considering the comparative risks of different qualities of radiation.  相似文献   

13.
The 2 fungicides nimrod and rubigan-4 were tested for genotoxicity using Vicia faba root tips as the biological test system. Treating lateral roots with different concentrations of each fungicide for different periods showed that both fungicides were able to produce numerical but not structural chromosomal aberrations. The percentage of total aberrations in root tips exposed to nimrod reached 54.39% at 250 ppm for 4 h, and 64.69% in root tips exposed to rubigan-4 at 250 ppm for 6 h. The types of numerical chromosomal aberrations produced by both fungicides included: binucleate cells, c-metaphases, sticky chromosomes, polyploid cells, and laggards. Recovery experiments for 24, 48, and 96 h showed no significant differences between the percentage of total aberrations in treated and control groups.  相似文献   

14.
Fish subjected to 350 R, 660 R and 990 R of X-radiation showed chromosomal aberrations such as chromatid breaks and gaps, and chromatid exchanges between several chromosomes. The frequency of aberrations/metaphase increased with radiation dosage. Likewise, the percentage of aberrant cells increased with increased irradiation. The countable metaphases fish was lower for higher doses of radiation. At lower doses single chromatid breaks accounted for most of the aberrations whereas complex aberrations involving the breakage and exchange of fragments between several chromosomes were more frequent in fish subjected to 990 R. Gill tissue yielded three times as many countable metaphases as did spleen tissue.  相似文献   

15.
Blood samples from 4 Down's syndrome (DS) patients with a 47,XY,21 + karyotype and from 4 normal male probands were cultured for 72 h in the presence of BrdU and lymphocytes analysed at their first mitosis for chromosomal aberrations. The frequencies of spontaneous aberrations and the proportions of cells in the first or later mitoses in culture were not different between the groups. Treatment with various doses of bleomycin in vitro resulted in similar delays in cell development for both DS and normal lymphocytes and dose-dependent increases in the incidence of chromosome-type aberrations. However, the induction of both dicentric aberrations and acentric fragments was significantly enhanced in DS cells relative to cells of normal karyotype.  相似文献   

16.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

17.
Comparative genomic hybridization in clinical cytogenetics.   总被引:5,自引:0,他引:5       下载免费PDF全文
We report the results of applying comparative genomic hybridization (CGH) in a cytogenetic service laboratory for (1) determination of the origin of extra and missing chromosomal material in intricate cases of unbalanced aberrations and (2) detection of common prenatal numerical chromosome aberrations. A total of 11 fetal samples were analyzed. Seven cases of complex unbalanced aberrations that could not be identified reliably by conventional cytogenetics were successfully resolved by CGH analysis. CGH results were validated by using FISH with chromosome-specific probes. Four cases representing common prenatal numerical aberrations (trisomy 21, 18, and 13 and monosomy X) were also successfully diagnosed by CGH. We conclude that CGH is a powerful adjunct to traditional cytogenetic techniques that makes it possible to solve clinical cases of intricate unbalanced aberrations in a single hybridization. CGH may also be a useful adjunct to screen for euchromatic involvement in marker chromosomes. Further technical development may render CGH applicable for routine aberration screening.  相似文献   

18.
The cytological analysis of chromosome aberrations induced at diplotene, mid-pachytene, zygotene and leptotene stages following X-irradiation was performed at diakinesis-metaphase I in mouse spermatocytes. The dose-response relationships fitted well to linear equations for deletion-type aberrations at each stage, and to linear-quadratic equations for exchange-type aberrations at all stages except for leptotene. The radiosensitivity to chromosome aberration induction tended to increase gradually with progression through synaptic and post-synaptic stages, diplotene being the most sensitive. Chromatid exchanges were hardly observed at leptotene, the aberrations being mainly isochromatid fragments. On the contrary, chromatid exchanges and isochromatid deletions were mainly observed at later stages (zygotene-diplotene). The specificity of chromosome aberration induction in primary spermatocytes might be influenced by chromatin organization and chromosomal configuration peculiar to meiotic cells.  相似文献   

19.
The chromosome aberrations induced at zygotene stage in mouse spermatocytes following exposures to fast neutrons and 60Co gamma-rays were examined at diakinesis-metaphase I. The dose-response relationships were well fitted to linear equation for deletion-type aberrations and to linear-quadratic equation for exchange-type aberrations in 60Co gamma-irradiation group. In fast neutron-irradiation group, the dose-response relationships were well fitted to linear equations for deletion- and exchange-type aberrations. The rate of deletion-type aberrations was remarkably high for fast neutrons, about 6 times higher than that after 60Co gamma-irradiation. The main types of chromosome aberrations observed were iso-chromatid breaks or fragments and chromatid exchanges in both irradiation groups as well as X-irradiation. These results indicate that there is a possibility that two double-strand breaks are induced simultaneously at iso-locus position in sister chromatids by a single track of radiations. Production of such single-track-induced two double-strand breaks in iso-chromatids may be very frequently expressed as iso-chromatid-type deletions in the high LET fast neutron-irradiation group. On the contrary, in the low LET 60Co gamma- or X-irradiation group, the above-mentioned mechanism may not be so effective for contribution to chromosome aberration induction in mouse spermatocytes. This mechanism was discussed in detail.  相似文献   

20.
A possible role for the superoxide anion radical (O2-) in the clastogenicity of paraquat (PQ) was investigated in cultured Chinese hamster cells. When cells were treated with 0.8 mg/ml of PQ for 3 h followed by 21 h of recovery time, structural chromosome aberrations were induced in about 50% of the metaphases examined. Almost all aberrations were of the chromatid-type and involved exclusively gaps and breaks. The induction of chromosomal aberrations by PQ was enhanced by a 1-h pretreatment with diethyldithiocarbamate, an inhibitor of superoxide dismutase. Diethyl maleate, a glutathione scavenger, also enhanced the induction of chromosomal aberrations, but 3-aminotriazole, an inhibitor of catalase, showed no such effects. Enhanced induction of chromosomal aberrations was also observed when PQ-treated cells were cultured at a high oxygen concentration (80%). The present results suggest that the production of chromosomal aberrations by PQ may be directly or indirectly related to the generation of O2-, but not to the formation of hydrogen peroxide by the dismutation reaction of O2- or of other active oxygen species including the hydroxyl radical and singlet oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号