首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The "host shutoff" function of bacteriophage T7 involves an inactivation of the host Escherichia coli RNA polymerase by an inhibitor protein bound to the enzyme. When this inhibitor protein, termed I protein, was removed from the inactive RNA polymerase complex prepared from T7-infected cells by glycerol gradient centrifugation in the presence of 1 M KCl, the enzyme recovered its activity equivalent to about 70 to 80% of the activity of the enzyme from uninfected cells. Analysis of the activity of E. coli RNA polymerase from E. coli cells infected with various T7 mutant phages indicated that the T7 gene 2 codes for the inhibitor I protein. The activity of E. coli RNA polymerase from gene 2 mutant phage-infected cells, which was about 70% of that from uninfected cells, did not increase after glycerol gradient centrifugation in the presence of 1 M KCl, indicating that the salt-removable inhibitor was not present with the enzyme. It was found that the reduction in E. coli RNA polymerase activity in cells infected with T7(+) or gene 2 mutant phage, i.e., about 70% of the activity of the enzyme compared to that from uninfected cells after glycerol gradient centrifugation in the presence of 1 M KCl, results from the function of T7 gene 0.7. E. coli RNA polymerase from gene 0.7 mutant phage-infected cells was inactive but recovered a full activity equivalent to that from uninfected cells after removal of the inhibitor I protein with 1 M KCl. E. coli RNA polymerase from the cells infected with newly constructed mutant phages having mutations in both gene 2 and gene 0.7 retained the full activity equivalent to that from uninfected cells with or without treatment of the enzyme with 1 M KCl. From these results, we conclude that both gene 2 and gene 0.7 of T7 are involved in accomplishing complete shutoff of the host E. coli RNA polymerase activity in T7 infection.  相似文献   

3.
Bacteriophage T7 expresses a serine/threonine-specific protein kinase activity during Infection of Its host, Escherichia coli. The protein kinase (gpO.7 PK), encoded by the T7 early gene 0.7, enhances phage reproduction under sub-optimal growth conditions. It was previously shown that ribosomal protein S1 and translation initiation factors IF1, IF2, and IF3 are phosphoryiated in T7-infected cells, and it was suggested that phosphorylation of these proteins may serve to stimulate translation of the phage late mRNAs. Using high-resolution two-dimensional gel electrophoresis and specific immunoprecipitation, we show that elongation factor G and ribosomal protein S6 are phosphorylated following T7 infection. The gel electro-phoretic data moreover indicate that elongation factor P is phosphorylated in T7-infected cells. T7 early and late mRNAs are processed by ribonuclease III, whose activity is stimulated through phosphorylation by gp0.7 PK. Specific overexpression and phosphorylation was used to locate the RNase III polypeptide in the standard two-dimensional gel pattern, and to confirm that serine is the phosphate-accepting amino acid. The two-dimensional gels show that the in vivo expression of gp0.7 PK results in the phosphorylation of over 90 proteins, which Is a significantly higher number than previous estimates. The protein kinase activities of the T7-related phages T3 and BA14 produce essentially the same pattern of phosphorylated proteins as that of T7. Finally, several experimental variables are analysed which influence the production and pattern of phosphorylated proteins in both uninfected and T7-rnfected cells.  相似文献   

4.
Gene 1.2 of bacteriophage T7, located near the primary origin of DNA replication at position 15.37 on the T7 chromosome, encodes a 10,059-dalton protein that is essential for growth on Escherichia coli optA1 strains (Saito, H., and Richardson, C. C. (1981) J. Virol. 37, 343-351). In the absence of the T7 1.2 and E. coli optA gene products, the degradation of E. coli DNA proceeds normally, and T7 DNA synthesis is initiated at the primary origin. However, T7 DNA synthesis ceases prematurely and the newly synthesized DNA is degraded; no viable phage particles are released. The gene 1.2 protein has been purified to apparent homogeneity from cells in which the cloned 1.2 gene is overexpressed. Purification of the [35S] methionine-labeled protein was followed by monitoring the radioactivity of the protein and by gel electrophoresis. The purified protein has been identified as the product of gene 1.2 on the basis of molecular weight and partial amino acid sequence. We have found that extracts of E. coli optA1 cells infected with T7 gene 1.2 mutants are defective in packaging exogenous T7 DNA when such extracts are prepared late in infection. Purified gene 1.2 protein restores packaging activity to these defective extracts, thus providing a biological assay for gene 1.2 protein. No specific enzymatic activity has been found associated with the purified gene 1.2 protein.  相似文献   

5.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

6.
The poliovirus 3AB gene has been cloned and overproduced in T7 expression vectors using different approaches to allow reduction of basal levels of expression. Expression of the poliovirus 3AB gene is highly toxic for E. coli cells, due to drastic changes induced in membrane permeability of the bacteria that lead to cell lysis when the T7 lysozyme is present. The best production of 3AB was achieved with the T7/lac system in cells lacking T7 lysozyme, where this toxic protein was synthesized to high levels and during several hours in the absence of cell lysis. These results show the efficient synthesis of a highly damaging membrane protein and open the possibility to apply heterologous gene expression in E. coli to other lytic proteins.  相似文献   

7.
Recently, we identified WISP-2 (Wnt-1 inducible signaling pathway protein 2) as a novel estrogen-inducible gene in the MCF-7 human breast cancer cell line. In this study, we examined whether WISP-2 expression is modulated by PK activators. Treatment with protein kinase A (PKA) activators [cholera toxin plus 3-isobutyl-1-methylxanthine (CT/IBMX)] induced WISP-2 expression. CT/IBMX induced expression of the other estrogen-responsive gene, pS2, more dramatically than maximum stimulation by 17beta-estradiol (E2). Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), which directly stimulates protein kinase C (PKC) activity, completely prevented WISP-2 mRNA induction by E2, whereas it increased pS2 mRNA expression more dramatically than maximum stimulation by E2. Results of treatments with the protein synthesis inhibitor cycloheximide and the pure antiestrogen ICI182,780 suggest that these PK pathways modulate WISP-2 gene expression via different molecular mechanisms than those for pS2. Because TPA inhibits cell proliferation, we investigated whether WISP-2 induction was dependent on cell growth. Cells were treated with insulin-like growth factor-1 (IGF-1) or interleukin-1alpha (IL-1alpha) to stimulate or inhibit cell growth, respectively. These treatments had no effect on WISP-2 mRNA expression either alone or in combination with E2, suggesting that WISP-2 induction is independent of cell growth.  相似文献   

8.
Bacteriophage T7 RNA polymerase is stable in Escherichia coli but very susceptible to cleavage by at least one endoprotease after cell lysis. The major source of this endoprotease activity was found to be localized to the outer membrane of the cell. A rapid whole-cell assay was developed to screen different strains for the presence of this proteolytic activity. Using this assay, we identified some common laboratory strains that totally lack the protease. Genetic and Southern analyses of these null strains allowed us to conclude that the protease that cleaves T7 RNA polymerase is OmpT (formerly termed protein a), a known outer membrane endoprotease, and that the null phenotype results from deletion of the OmpT structural gene. A recombinant plasmid carrying the ompT gene enables these deletion strains to synthesize OmpT and converts them to a protease-positive phenotype. The plasmid led to overproduction of OmpT protein and protease activity in the E. coli K-12 and B strains we used, but only weak expression in the E. coli C strain, C1757. This strain-dependent difference in ompT expression was investigated with respect to the known influence of envZ on OmpT synthesis. A small deletion in the ompT region of the plasmid greatly diminishes the amount of OmpT protein and plasmid-encoded protease present in outer membranes. Use of ompT deletion strains for production of T7 RNA polymerase from the cloned gene has made purification of intact T7 RNA polymerase routine. Such strains may be useful for purification of other proteins expressed in E. coli.  相似文献   

9.
In this paper we compare the effect of single-stranded DNA-binding proteins of bacteriophage T7 (gene 2.5 protein) and of Escherichia coli (SSB) at the T7 replication fork. The T7 gene 4 protein acts processively as helicase to promote leading strand synthesis and distributively as primase to initiate lagging strand synthesis by T7 DNA polymerase. On a nicked double-stranded template, the formation of a replication fork requires partial strand displacement so that gene 4 protein may bind to the displaced strand and unwind the helix catalytically. Both the T7 gene 2.5 protein and E. coli SSB act stoichiometrically to promote this initial strand displacement step. Once initiated, processive leading strand synthesis is not greatly stimulated by the single-stranded DNA-binding proteins. However, the T7 gene 2.5 protein, but not E. coli SSB, increases the frequency of initiation of lagging strand synthesis by greater than 10-fold. The results suggest a specific interaction of the T7 gene 2.5 protein with the T7 replication apparatus.  相似文献   

10.
The overexpression of four different interferons, i.e., murine interferon α1 and human interferons α1, α8, and α21 was challenged in Escherichia coli. Synthetic genes coding for these interferons were designed, assembled, and cloned into the vector pET9a (using the NdeI and BamHI sites), placing interferon expression under the control of phage T7 promoter. Despite an intensive screening for optimal culture conditions, no interferon synthesis was observed using overexpression systems based on the regulatory elements of lac operon (e.g., in E. coli BL21DE3). On the contrary, high levels of interferon expression were detected in E. coli BL21AI, which chromosome contains the gene coding for phage T7 RNA polymerase under the control of the araBAD promoter. To analyze the reasons of this striking difference, the molecular events associated with the lack of interferon expression in E. coli BL21DE3 were studied, and murine interferon α1 was chosen as a model system. Surprisingly, it was observed that this interferon represses the synthesis of T7 RNA polymerase in E. coli BL21DE3 and, in particular, the expression of lac operon. In fact, by determining β‐galactosidase activity in E. coli BL21AI, a significantly lower LacZ activity was observed in cells induced to interferon synthesis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
Bacteriophage T7 gene 2.5 protein has been shown to interact with T7 DNA polymerase (the complex of T7 gene 5 protein and Escherichia coli thioredoxin) by affinity chromatography and fluorescence emission anisotropy. T7 DNA polymerase binds specifically to a resin coupled to gene 2.5 protein and elutes from the resin when the ionic strength of the buffer is raised to 250 mM NaCl. In contrast, T7 gene 5 protein alone binds more weakly to gene 2.5 protein, eluting when the ionic strength of the buffer is 50 mM NaCl. Thioredoxin does not bind to gene 2.5 protein. Steady-state fluorescence emission anisotropy gives a dissociation constant of 1.1 +/- 0.2 microM for the complex of gene 2.5 protein and T7 DNA polymerase, with a ratio of gene 2.5 protein to T7 DNA polymerase in the complex of 1:1. Nanosecond emission anisotropic analysis suggests that the complex contains one monomer each of gene 2.5 protein, gene 5 protein, and thioredoxin. The ability of T7 gene 2.5 protein to stimulate the activity and processivity of T7 DNA polymerase is compared with the ability of three other single-stranded DNA-binding proteins: E. coli single-stranded DNA-binding protein, T4 gene 32 protein, and E. coli recA protein. All except E. coli recA protein stimulate the activity and processivity of T7 DNA polymerase; E. coli recA protein inhibits these activities.  相似文献   

12.
Complementation analysis showed that the Bradyrhizobium japonicum hemH gene was both necessary and sufficient to rescue mutant strains I110ek4 and I110bk2 in trans with respect to hemin auxotrophy, protoporphyrin accumulation, and the deficiency in ferrochelatase activity. The B. japonicum hemH gene was expressed in an Escherichia coli T7 expression system and yielded a 39-kDa protein, which was consistent with the predicted size of the deduced product. The overexpressed protein was purified and shown to contain ferrochelatase activity, thereby demonstrating that the hemH gene encodes ferrochelatase. When expressed from the lac promoter, the B. japonicum hemH gene was able to complement the enzyme activity of a ferrochelatase-defective E. coli mutant, and it also conferred hemin prototrophy on those cells. These latter findings confirm the identity of the hemH gene product and demonstrate that B. japonicum ferrochelatase can interact with the E. coli heme synthesis enzymes for heme formation in complemented cells.  相似文献   

13.
The GlnAP2 element has been proved to be an effective and inducible-by exogenous acetate-promoter in Escherichia coli with glnL/pta double mutations. Based on this feature, a single-copy expression vector was constructed via coupling of the glnAP2 promoter-regulated T7 RNA polymerase gene and the T7-promoter-controlled lacZ gene on a bacterial artificial chromosome. After induction with 20 mM potassium acetate, the glnL/pta double mutant E. coli harboring the single-copy plasmid produced 47,500 Miller units of beta-galactosidase activity. This high level expression, corresponding to 27% of total cell protein, was comparable to that determined with the commercial multi-copy expression vector, pET-14b, in strain E. coli Tuner (DE3) (64,300 Miller units, 41% of total cell protein). Moreover, this single-copy expression vector could be maintained for at least 150 generations even in the presence of inducers. In contrast, the multi-copy expression vector was extensively lost after induction. The results indicate that the single-copy expression system has the potential for high-level heterologous protein production for industrial applications.  相似文献   

14.
15.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

16.
17.
18.
19.
The product of gene 1.2 of bacteriophage T7 is not required for the growth of T7 in wild-type Escherichia coli since deletion mutants lacking the entire gene 1.2 grow normally (Studier et al., J. Mol. Biol. 135:917-937, 1979). By using a T7 strain lacking gene 1.2, we have isolated a mutant of E. coli that was unable to support the growth of both point and deletion mutants defective in gene 1.2. The mutation, optA1, was located at approximately 3.6 min on the E. coli linkage map in the interval between dapD and tonA; optA1 was 92% cotransducible with dapD. By using the optA1 mutant, we have isolated six gene 1.2 point mutants of T7, all of which mapped between positions 15 and 16 on the T7 genetic map. These mutations have also been characterized by DNA sequence analysis, E. coli optA1 cells infected with T7 gene 1.2 mutants were defective in T7 DNA replication; early RNA and protein synthesis proceeded normally. The defect in T7 DNA replication is manifested by a premature cessation of DNA synthesis and degradation of the newly synthesized DNA. The defect was not observed in E. coli opt+ cells infected with T7 gene 1.2 mutants or in E. coli optA1 cells infected with wild-type T7 phage.  相似文献   

20.
The pLysN plasmid containing the T7 lysozyme gene under control of the lac promoter was constructed to facilitate cell disintegration after expression of recombinant proteins in arabinose-induced expression systems. The usefulness of this plasmid was tested in Escherichia coli TOP10 and E. coli LMG194 cells carrying pBADMHADgeSSB plasmid containing Deinococcus geothermalis SSB protein gene under control of the araBAD promoter. The results showed that low-level expression of T7 lysozyme did not interfere with the target SSB protein production, and that the freezing-thawing treatment was sufficient for disruption of the E. coli cells producing low amounts of T7 lysozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号