首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src-family protein kinases inhibitor. Also, H(2)O(2) triggered an increase in cytosolic [Ca(2+)] that paralleled the time course of PLCgamma1 phosphorylation. The H(2)O(2)-induced [Ca(2+)](i) rise was prevented by the generic phospholipase C (PLC) inhibitor U73122 and the inositol 1,4,5-trisphosphate-receptor (IP(3)R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation of VSOR Cl(-) currents. All these H(2)O(2)-induced effects were independent of extracellular Ca(2+). Our findings suggest that activation of PLCgamma1 and subsequent Ca(2+)(i) mobilisation mediate H(2)O(2)-induced VSOR Cl(-) currents, indicating that H(2)O(2) operates via redox-sensitive signalling pathways akin to those activated by osmotic challenges.  相似文献   

2.
Xiao GN  Guan YY  He H 《Life sciences》2002,70(19):2233-2241
The effects of Cl- channel blockers on endothelin-1 (ET-1)-induced proliferation of rat aortic vascular smooth muscle cells (VSMC) were examined. We found ET-1 concentration-dependently increased cell count and [3H]-thymidine incorporation into VSMC, with EC50 values of 24.8 and 11.4 nM, respectively. Both nifedipine and SK&F96365 inhibited 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC with the maximal inhibitory concentrations of 1 and 10 microM, respectively. DIDS inhibited 10 nM ET-1-induced increase in cell count and [3H]-thymidine incorporation into VSMC in a concentration-dependent manner, whereas other Cl- channel blockers including IAA-94, NPPB, DPC, SITS and furosemide did not produce these effects. 3 microM DIDS reduced 10 nM ET-1-induced sustained increase in cytoplasmic Ca2+ concentration ([Ca2+]) by 52%. Pretreatment of VSMC with 1 microM nifedipine completely inhibited the DIDS effect on 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC and sustained increase in [Ca2+]i, whereas pretreatment with 10 microM SK&F96365 did not completely block these effects of DIDS. DIDS did not affect ET-1-induced Ca2+ release and 30 mM KCl-induced increase in [Ca2+]i. Our data suggest that DIDS-sensitive Cl- channels mediate VSMC proliferation induced by ET-1 by mechanisms related to membrane depolarization and Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

3.
Apoptosis of cardiomyocytes following ischemia and Apoptosis of cardiomyocytes following ischemia and known about the mechanism by which it is induced. Recently, essential roles of a Cl- channel whose activity triggers the apoptotic volume decrease and of reactive oxygen species (ROS) in activation of this channel have been identified in mitochondrion-mediated apoptosis. Therefore, in this study, involvement of Cl- channels and ROS in apoptosis was studied in primary mouse cardiomyocyte cultures subjected to ischemia-reperfusion. Apoptotic cell death as measured by caspase-3 activation, chromatin condensation, DNA laddering, and cell viability reduction was observed tens of hours after reperfusion but never immediately after ischemia. A non-selective Cl-channel blocker (DIDS or NPPB) rescued cells from apoptotic death when applied during the reperfusion, but not ischemia, period. Another blocker relatively specific to the volume-sensitive outwardly rectifying (VSOR) Cl-channel (phloretin) was also effective in protecting ischemic cardiomyocytes from apoptosis induced by reperfusion. A profound increase in intracellular ROS was detected in cardiomyocytes during the reperfusion, but not ischemia, period. Scavengers for ROS, H2O2 and superoxide all inhibited apoptosis induced by ischemia-reperfusion. Thus, it is concluded that the mechanism by which cardiomyocyte apoptosis is induced by ischemia-reperfusion involves VSOR Cl- channel activity and intracellular ROS production.  相似文献   

4.
Two antiallergic drugs, cromolyn and RU 31156, were examined for their potency to block intermediate-conductance Cl- channels. For this, single Cl- channel activities of mucosal-type mast cells (RBL-2H3) and alternatively, of colonic carcinoma cells (HT29) were monitored employing the patch-clamp technique in the inside-out patch configuration. Here we show that intermediate-conductance Cl- channels of either cell type were blocked by both compounds. Cl- channel inhibition occurred by a slow rather than a flickering block and with a Hill coefficient around 1. RU 31156 was about one order of magnitude more potent (IC50 about 1 microM) than cromolyn. The IC50 values of each compound were not significantly different (p < 0.01) in the two cell types. Our data provide evidence for two novel Cl- channel blockers, which may be of further use in Cl- channel characterization as well as purification.  相似文献   

5.
Cellular swelling triggers the activation of Cl(-) channels (volume-sensitive outwardly rectifying (VSOR) Cl(-) channels) in many cell types. Ensuing regulatory volume decrease has been considered the primary function of these channels. However, Cl(-) channels, which share functional properties with volume-sensitive Cl(-) channels, have been shown to be involved in other physiological processes, including cell proliferation and apoptosis, raising the question of their physiological roles and the signal transduction pathways involved in their activation. Here we report that exogenously applied H(2)O(2) elicited VSOR Cl(-) channel activation. Furthermore, activation of these channels was found to be coupled to NAD(P)H oxidase activity. Also, epidermal growth factor, known to increase H(2)O(2) production, activated Cl(-) channels with properties identical to swelling-sensitive Cl(-) channels. It is concluded that NAD(P)H oxidase-derived H(2)O(2) is the common signal transducing molecule that mediates the activation of these ubiquitously expressed anion channels under a variety of physiological conditions.  相似文献   

6.
Longitudinal bone growth occurs by a process called endochondral ossification that includes chondrocyte proliferation, differentiation, and apoptosis. Recent studies have suggested a regulatory role for intracellular Ca(2+) (Ca(i) (2+)) in this process. Indirect studies, using Ca(2+) channel blockers and measurement of Ca(i) (2+), have provided evidence for the existence of Ca(2+) channels in growth plate chondrocytes. Furthermore, voltage-gated Ca(2+) channels (VGCC), and specifically L- and T-type VGCCs, have been recently described in murine embryonic growth plates. Our aim was to assess the effect of L-type Ca(2+) channel blockers on endochondral ossification in an organ culture. We used cultures of fetal rat metatarsal rudiments at 20 days post gestational age, with the addition of the L-type Ca(2+) channel blockers verapamil (10-100 microM) or diltiazem (10-200 microM) to the culture medium. Longitudinal bone growth, chondrocyte differentiation (number of hypertrophic chondrocytes), and cell proliferation (incorporation of tritiated thymidine) were measured. Verapamil dose-dependently decreased growth, the number of hypertrophic chondrocytes, and cell proliferation, at concentrations of 10-100 microM. Growth and the number of hypertrophic chondrocytes decreased significantly with diltiazem at 50-100 microM, and proliferation decreased significantly at concentrations of 10-200 microM. Additionally, there was no increase in apoptosis over physiological levels with either drug. We confirmed the presence of L-type VGCCs in rat rudiments using immunohistochemistry, and showed that the antagonists did not alter the pattern of VGCC expression. In conclusion, our data suggest that L-type Ca(2+) channel activity in growth plate chondrocytes is necessary for normal longitudinal growth, participating in chondrocyte proliferation and differentiation.  相似文献   

7.
Volume-sensitive outwardly rectifying (VSOR) Cl- channels are activated during osmotic swelling and involved in the subsequent volume regulation in most animal cells. To test the hypothesis that the ClC-3 protein is the molecular entity corresponding to the VSOR Cl- channel in cardiomyocytes, the properties of VSOR Cl- currents in single ventricular myocytes isolated from ClC-3-deficient (Clcn3(-/-)) mice were compared with those of the same currents in ClC-3-expressing wild-type (Clcn3(+/+)) and heterozygous (Clcn3(+/-)) mice. Basal whole-cell currents recorded under isotonic conditions in ClC-3-deficient and -expressing cells were indistinguishable. The biophysical and pharmacological properties of whole-cell VSOR Cl- currents in ClC-3-deficient cells were identical in ClC-3-expressing cells. The VSOR Cl- current density, which is an indicator of the plasmalemmal expression of functional channels, was essentially the same in cells isolated from these 3 types of mice and C57BL/6 mice. Activation of protein kinase C (PKC) by a phorbol ester was found to upregulate VSOR Cl- currents in ClC-3-deficient and -expressing cardiomyocytes. This effect is opposite to the reported downregulatory effect of PKC activators on ClC-3-associated Cl- currents. We thus conclude that functional expression of VSOR Cl- channels in the plasma membrane of mouse cardiomyocytes is independent of the molecular expression of ClC-3.  相似文献   

8.
Although mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoK(ATP) channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoK(ATP) channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosis of cultured neonatal rat cardiomyocytes was determined by flow cytometry (light scatter and propidium iodide/annexin V-FITC fluorescence) and by nuclear staining with Hoechst 33342. Mitochondrial membrane potential (DeltaPsi) was measured by flow cytometry of cells stained with rhodamine-123 (Rh-123). Exposure to H(2)O(2) (500 microM) induced apoptosis, and the percentage of apoptotic cells increased progressively and peaked at 2 h. This H(2)O(2)-induced apoptosis was associated with the loss of DeltaPsi, and the time course of decrease in Rh-123 fluorescence paralleled that of apoptosis. Pretreatment of cardiomyocytes with diazoxide (100 microM), a putative mitoK(ATP) channel opener, for 30 min before exposure to H(2)O(2) elicited transient and mild depolarization of DeltaPsi and consequently suppressed both apoptosis and DeltaPsi loss after 2-h exposure to H(2)O(2). These protective effects of diazoxide were abrogated by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microM) but not by the sarcolemmal K(ATP) channel blocker HMR-1098 (30 microM). Our results suggest for the first time that diazoxide-induced opening of mitoK(ATP) channels triggers cardioprotection against apoptosis induced by oxidative stress in rat cardiomyocytes.  相似文献   

9.
Outwardly rectifying Cl- channels are present in the human colonic cell line (HT29D4). The classical Cl- channel blocker 5-nitro-2(3-phenylpropylamino)benzoate inhibits Cl- channel activity with a K0.5 value of 20 microM. Epithelial Cl- channel activity is inhibited by Ca2+ channel blockers. Phenylalkylamines are the most effective inhibitors. (+/-)Verapamil and (-)desmethoxyverapamil induce flickering and then the complete blockade of Cl- channels recorded from outside-out patches. K0.5 values are 60 microM and 100 microM for (-)desmethoxyverapamil and (+/-)verapamil, respectively. Other classes of L-type Ca2+ channel blockers have also been studied but they are less active.  相似文献   

10.
Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H2O2)-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H2O2 activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H2O2 elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1 h and induced apoptosis of most PC12 cells tested in 24 h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H2O2-induced high membrane permeability and cell shrinkage, suppressed H2O2-activated chloride currents and protected PC12 cells from apoptosis induced by H2O2. The results suggest that chloride channels may contribute to H2O2-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.  相似文献   

11.
Cl- efflux induces depolarization and contraction of smooth muscle cells. This study was undertaken to explore the role of Cl- channels in endothelin-1 (ET-1)-induced contraction in rabbit basilar artery. Male New Zealand White rabbits (n = 26), weighing 1.8-2.5 kg, were euthanized by an overdose of pentobarbital. The basilar arteries were removed for isometric tension recording. ET-1 produced a concentration-dependent contraction of the rabbit basilar artery in the normal Cl- Krebs-Henseleit bicarbonate buffer (123 mM Cl-). The ET-1-induced contraction was reduced by the following manipulations: 1) inhibition of Na+-K+-2Cl- cotransporter with bumetanide (3 x 10(-5) and 10(-4) M), 2) bicarbonate-free solution to disable Cl-/HCO exchanger, and 3) preincubation of rings with the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid, and indanyloxyacetic acid 94. The ET-1-induced contraction was enhanced by substitution of extracellular Cl- (10 mM) with methanesulfonic acid (113 mM). Cl- channels are involved in ET-1-induced contraction in the rabbit basilar artery.  相似文献   

12.
OBJECTIVES: Previously it has been shown, that the volume-activated plasma membrane chloride channel is associated with regulatory volume decrease (RVD) of cells and may play an important role in control of cell proliferation. We have demonstrated that both expression of the channel and RVD capacity are actively regulated in the cell cycle. In this study, we aimed to further study the role of the volume-activated chloride current and RVD in cell cycle progression and overall in cell proliferation. MATERIALS AND METHODS: Whole-cell currents, RVD, cell cycle distribution, cell proliferation and cell viability were measured or detected with the patch-clamp technique, the cell image analysis technique, flow cytometry, the MTT assay and the trypan blue assay respectively, in nasopharyngeal carcinoma cells (CNE-2Z cells). RESULTS: The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, inhibit the volume-activated chloride current, RVD and proliferation of CNE-2Z cells in a dose-dependent manner. Analysis of relationships between the current, RVD and cell proliferation showed that both the current and RVD were positively correlated with cell proliferation. NPPB (100 microM) and tamoxifen (20 microM) did not significantly induce cell death, but inhibited cell proliferation, implying that the blockers may inhibit cell proliferation by affecting cell cycle progression. This was verified by the observation that tamoxifen (20 microM) and NPPB (100 microM) inhibited cell cycle progress and arrested cells at the G0/G1 phase boundary. CONCLUSIONS: Activity of the volume-activated chloride channel is one of the important factors that regulate the passage of cells through the G1 restriction point and that the Cl- current associated with RVD plays an important role in cell proliferation.  相似文献   

13.
To examine a possible relation between the swelling-induced ATP release pathway and the volume-sensitive Cl(-) channel, we measured the extracellular concentration of ATP released upon osmotic swelling and whole-cell volume-sensitive Cl(-) currents in a human epithelial cell line, Intestine 407, which lacks expression of cystic fibrosis transmembrane conductance regulator (CFTR). Significant release of ATP was observed within several minutes after a hypotonic challenge (56-80% osmolality) by the luciferin/luciferase assay. A carboxylate analogue Cl(-) channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, suppressed ATP release in a concentration-dependent manner with a half-maximal inhibition concentration of 6.3 microM. However, swelling-induced ATP release was not affected by a stilbene-derivative Cl(-) channel blocker, 4-acetamido-4'-isothiocyanostilbene at 100 microM. Glibenclamide (500 microM) and arachidonic acid (100 microM), which are known to block volume-sensitive outwardly rectifying (VSOR) Cl(-) channels, were also ineffective in inhibiting the swelling-induced ATP release. Gd(3+), a putative blocker of stretch-activated channels, inhibited swelling-induced ATP release in a concentration-dependent manner, whereas the trivalent lanthanide failed to inhibit VSOR Cl(-) currents. Upon osmotic swelling, the local ATP concentration in the immediate vicinity of the cell surface was found to reach approximately 13 microM by a biosensor technique using P2X(2) receptors expressed in PC12 cells. We have raised antibodies that inhibit swelling-induced ATP release from Intestine 407 cells. Earlier treatment with the antibodies almost completely suppressed swelling-induced ATP release, whereas the activity of VSOR Cl(-) channel was not affected by pretreatment with the antibodies. Taking the above results together, the following conclusions were reached: first, in a CFTR-lacking human epithelial cell line, osmotic swelling induces ATP release and increases the cell surface ATP concentration over 10 microM, which is high enough to stimulate purinergic receptors; second, the pathway of ATP release is distinct from the pore of the volume-sensitive outwardly rectifying Cl(-) channel; and third, the ATP release is not a prerequisite to activation of the Cl(-) channel.  相似文献   

14.
过氧化氢预处理对抗氧化应激诱导的PC12细胞凋亡   总被引:1,自引:0,他引:1  
Tang XQ  Chen J  Tang EH  Feng JQ  Chen PX 《生理学报》2005,57(2):211-216
氧化应激可明显地诱导细胞凋亡。本研究旨在探讨H2O2预处理能否对H2O2诱导的PC12细胞凋亡生产保护作用及ATP敏感性K^ (ATP-sensitive potassinm,KATP)通道在其中的作用。采用PI染色流式细胞仪(flow cytometry, FCM)检测PC12细胞凋亡。结果表明,经10μmol/L H2O2预处理90min的PC12细胞,分别在20、30、50和100μmol/L H2O2作用24h后,其细胞凋亡率明显下降,与未经H2O2的预处理的PC12细胞相比,差异极显著(P<0.01),表明H2O2预处理对H2O2诱导PC12细胞凋亡具有保护作用。用10μmol/L的KATP通道激动齐pinacidil(Pin)可显著减少30和50μmol/L H2O2诱导的PC12细胞凋亡,10μmol/L的KATP通道拮抗齐glybenclamide(Gly)则可显著地抑制甚至取消KATP通道激动剂Pin对H2O3诱导PC12细胞凋亡的保护作用,但并不影响H2O2预处理对H2O2诱导PC12细胞凋亡的保护作用;然而,当联合应用H2O2预处理与Pin时,对PC12细胞凋亡的保护作用显大于各自的细胞凋亡作用。提示KATP通道开放不仅对H2O2诱导PC12细胞凋亡具有保护作用,而且与H2O2预处理一起产生抗PC12细胞凋亡的协同作用。但KATP通道开放可能不参与H2O2预处理的适应性保护作用。  相似文献   

15.
Cisplatin is a widely used platinum-based anticancer drug in the chemotherapy of numerous human cancers. However, cancer cells acquire resistance to cisplatin. So far, functional loss of volume-sensitive outwardly rectifying (VSOR) Cl channels has been reported to contribute to cisplatin resistance of cancer cells. Here, we analyzed protein expression patterns of human epidermoid carcinoma KB cells and its cisplatin-resistant KCP-4 cells. Intriguingly, KB cells exhibited higher β-actin expression and clearer actin filaments than KCP-4 cells. The β-actin knockdown in KB cells decreased VSOR Cl currents and inhibited the regulatory volume decrease (RVD) process after cell swelling. Consistently, KB cells treated with cytochalasin D, which depolymerizes actin filaments, showed smaller VSOR Cl currents and slower RVD. Cytochalasin D also inhibited cisplatin-triggered apoptosis in KB cells. These results suggest that the disruption of actin filaments cause the dysfunction of VSOR Cl channels, which elicits resistance to cisplatin in human epidermoid carcinoma cells.  相似文献   

16.
17.
Arginine-vasopressin (AVP) elicits a variety of responses in cultured rat mesangial cells, among them stimulation of prostaglandin biosynthesis and activation of Cl- channels. AVP produced an 11-fold increase over basal levels in prostaglandin E2 release from cultured mesangial cells. This response was completely inhibited by 25 microM indomethacin and 82 +/- 5% inhibited by 25 microM 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) which is a potent blocker of epithelial Cl- channels. The IC50 for NPPB inhibition of prostaglandin E2 release was 8 microM. Indomethacin and NPPB at 25 microM also inhibited AVP-stimulated cellular accumulation of prostaglandin E2 by 98% and 79 +/- 7% respectively. The inhibitory effect of NPPB was not due to interference with the cellular response to AVP since at 50 microM it did not block AVP-stimulated release of arachidonate metabolites from cells metabolically labeled with [3H]-arachidonic acid. It is suggested that NPPB inhibition of prostaglandin E2 synthesis is at the cyclooxygenase level on the basis of its structural similarity to the fenamic acid type of cyclooxygenase inhibitors.  相似文献   

18.
Vascular dysfunction is a hallmark of many diseases, including coronary heart disease, stroke, and diabetes. The underlying mechanisms of these disorders are intimately associated with an increase in oxidative stress and excess generation of reactive oxygen species. Here, we report that the anionic free radical, superoxide (O2*- ), directly affects the function of ion channels in vascular endothelial cells. Vascular endothelial cells were exposed to O2*- under physiological, symmetrical chloride and chloride-free conditions. Superoxide was generated from the reaction of xanthine (0.2 mM) and xanthine oxidase (0.1, 1, and 10 mU/ml) while its effects were determined with the whole cell mode of the patch-clamp technique. Inhibitors of K+ and Cl- channels were used to determine the role of these ion channels in mediating the electrophysiological effects of superoxide. The addition of O2*- caused a dose-dependent depolarization of endothelial cells and activation of the whole cell current. Activation of superoxide-dependent current was observed in the presence of inhibitors of K+ channels, Ba2+ (100 microM) or iberiotoxin (100 nM), and was not affected by inhibitors of nonselective cation channels, La3+, or by inhibition of the Cl-/HCO3- transporter by bumetanide. The inhibitors of the Cl- channel, NPPB (0.1 mM) or DIDS (100 microM), partially prevented activation of superoxide-dependent current but were unable to reverse it. The effects of superoxide on the amplitude of whole cell current were prevented and reversed by superoxide dismutase. Taken together, these results suggest that superoxide directly affects the function of ion channels in vascular endothelium but the mechanisms of its modulatory effects remain unresolved.  相似文献   

19.
Crosslinking of type I Fc epsilon receptors (Fc epsilon RI) on the surface of basophils or mast cells initiates a cascade of processes leading to the secretion of inflammatory mediators. We report here a correlation between mediator secretion and the activation of Cl- channels in rat mucosal-type mast cells (line RBL-2H3). Stimulation of RBL cells by either IgE and antigen or by a monoclonal antibody specific for the Fc epsilon RI, resulted in the activation of Cl- ion channels as detected by the patch-clamp technique. Channel activation occurred slowly, within minutes after stimulation. The channel has a slope conductance of 32 pS at potentials between 0 and -100 mV, and an increasing open-state probability with increasing depolarization. Activation of apparently the same Cl- channels could be mimicked without stimulation by isolating inside-out membrane patches in tyrode solution. Parallel inhibition of both Cl- channel activity and mediator secretion, as monitored by serotonin release, was observed by two compounds, the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and the anti-allergic drug cromolyn. NPPB inhibited both the antigen-induced Cl- current and the serotonin release, where half-maximal inhibition occurred at similar doses, at 52 microM and 77 microM, respectively. The drug cromolyn, recently found to inhibit immunologically induced mediator secretion from RBL cells upon intracellular application, also blocks Cl- channels (IC50 = 15 microM) when applied to the cytoplasmic side of an inside-out membrane patch. The observed Cl- channel activation upon immunological stimulation and the parallel inhibition of channel current and of serotonin release suggests a functional role for this Cl- channel in mediator secretion from the mast cells studied.  相似文献   

20.
Jin Q  Kang C  Soh Y  Sohn NW  Lee J  Cho YH  Baik HH  Kang I 《Life sciences》2002,71(17):2053-2066
Tetrandrine (TET), a plant alkaloid, is known primarily as a non-selective Ca(2+) channel blocker. On the contrary to the cytoprotective effect on ischemia/reperfusion injury, TET has also been reported to cause cytotoxicity. In this study, we wished to understand the apparently disparate effects of this potential drug and thus investigated molecular mechanisms on proliferation and apoptosis and its effect on oxidative stress-induced apoptosis in Neuro 2a mouse neuroblastoma cells. We showed that TET, at high concentrations, induced cell cycle arrest and apoptosis through oxidative stress with following observations. Firstly, 10 microM TET elevated the reactive oxygen species (ROS) level and accordingly depleted glutathione (GSH) content. Secondly, pretreatment with antioxidants (NAC or GSH) protected cells from TET-induced apoptosis. We also demonstrated that treatment with 10 microM TET caused not only induction of p53, p21(waf1), and Bax, but also nuclear translocation of p53 and hypo-phosphorylation of pRb concurrently. Our important finding is that the concentration-dependent dual effect of TET, either inhibiting or promoting cell death induced by H(2)O(2) was observed, probably through regulating redox balance, which was well reflected on the GSH content in each condition. Besides, inhibition of Ca(2+) influx protected cells from H(2)O(2)-induced apoptosis even in the presence of 10 microM TET. Taken together, our data suggest that TET regulation of cellular redox states may play a major role in its dual action of cytotoxicity and cytoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号