首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the involvement of Na+,K+,2Cl cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70–75% with a K i of ∼0.2–0.3 μm. At concentrations ranging up to 1 μm, bumetanide did not affect 36Cl influx and reduced it by 20–30% in the range from 3 to 100 μm. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na+- or Cl-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Na+ o and K+ o . Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a K i or ∼0.3 μm. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 μm) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Na+ o + Cl o )-dependent K+/K+ exchange and Na+ o -dependent K+,Cl cotransport, respectively. Received: 30 January 1996/Revised: 20 May 1996  相似文献   

2.
Summary In order to investigate the question whether ammonium reabsorption in the thick ascending limb of Henle's loop (TALH) proceeds via the Na+,K+,Cl-cotransporter, plasma membrane vesicles were prepared from TALH cells isolated from rabbit kidney outer medulla and the effect of NH 4 + on their transport properties was investigated. It was found that, in the presence of a 78-mmol/liter NaCl gradient, 5 mmol/liter NH 4 + inhibited bumetanide-sensitive rubidium flux by 86%; a similar decrease was observed for 5 mmol/liter, K+. Inhibition of bumetanide-sensitive rubidium uptake by NH 4 + was competitive and an apparentK i of 1.9 mmol/liter was found Bumetanide-sensitive sodium uptake measured in the presence of a 83 mmol/liter KCl gradient was not inhibited by 5 mmol/liter NH 4 + . A 100-mmol/liter NH4Cl gradient was, however, capable of stimulating bumetanide-sensitive sodium uptake to the same extent as a KCl gradient. These data suggest that NH 4 + is accepted by the K+ site of the Na+,K+,Cl-cotransport system and that the transporter can function in a Na+, NH 4 + ,2Cl mode. Since the affinity of the transporter for NH 4 + lies in the concentration range found in the TALH lumen in vivo, it is concluded that Na+, NH 4 + 2Cl-cotransport can contribute to the NH 4 + reabsorption in this tubular segment.  相似文献   

3.
We demonstrated recently that in renal epithelial cells from collecting ducts of Madin-Darby canine kidneys (MDCK), Na+,K+,Cl cotransport is inhibited up to 50% by ATP via its interaction with P2Y purinoceptors (Biochim. Biophys. Acta 1998. 1369:233–239). In the present study we examined which type of renal epithelial cells possesses the highest sensitivity of Na+,K+,Cl cotransport to purinergic regulation. We did not observe any effect of ATP on Na+,K+,Cl cotransport in renal epithelial cells from proximal and distal tubules, whereas in renal epithelial cells from rabbit and rat collecting ducts ATP decreased the carrier's activity by ∼30%. ATP did not affect Na+,K+,Cl cotransport in C7 subtype MDCK cells possessing the properties of principal cells but led to ∼85% inhibition of this carrier in C11-MDCK cells in which intercalated cells are highly abundant. Both C7- and C11-MDCK exhibited ATP-induced IP3 and cAMP production and transient elevation of [Ca2+] i . In contrast to the above-listed signaling systems, ATP-induced phosphorylation of ERK and JNK MAP kinases was observed in C11-MDCK only. Thus, our results reveal that regulation of renal Na+,K+,Cl cotransport by P2Y receptors is limited to intercalated cells from collecting ducts and indicate the involvement of the MAP kinase cascade in purinergic control of this ion carrier's activity. Received: 10 June 1999/Revised: 23 August 1999  相似文献   

4.
β-Amyloid (Aβ) peptides are generated from the successive proteolytic processing of the amyloid precursor protein (APP) by the β-APP cleaving enzyme (BACE or β-secretase) and the γ-secretase complex. Initial cleavage of APP by BACE leads into the amyloidogenic pathway, causing or exacerbating Alzheimer's disease. Therefore, their intracellular traffic can determine how easily and frequently BACE has access to and cleaves APP. Here, we have used polarized Madin-Darby canine kidney (MDCK) cells stably expressing APP and BACE to examine the regulation of their polarized trafficking by retromer, a protein complex previously implicated in their endosome-to-Golgi transport. Our data show that retromer interacts with BACE and regulates its postendocytic sorting in polarized MDCK cells. Depleting retromer, inhibiting retromer function, or preventing BACE interaction with retromer, alters trafficking of BACE, which thereby increases its localization in the early endocytic compartment. As a result, this slows endocytosis of apically localized BACE, promoting its recycling and apical-to-basolateral transcytosis, which increases APP/BACE interaction and subsequent cleavage of APP toward generation and secretion of Aβ peptides.  相似文献   

5.
Previously, we observed that sustained activation of P2Y1 leads to inhibition of Na+,K+,Cl cotransport (NKCC) in C11 cells resembling intercalated cells from collecting ducts of the Madin-Darby canine kidney. This study examined the role of stress-activated protein kinases (SAPK) in NKCC inhibition triggered by purinergic receptors. Treatment of C11 cells with ATP led to sustained phosphorylation of SAPK such as JNK and p38. Activation of these kinases also occurred in anisomycin-treated cells. Surprisingly, we observed that compounds SP600125 and SB202190, known as potent inhibitors of JNK and p38 in cell-free systems, activated rather than inhibited phosphorylation of the kinases in C11 cells. Importantly, similarly to ATP, all the above-listed activators of JNK and p38 phosphorylation inhibited NKCC. Thus, our results suggest that activation of JNK and/or p38 contributes to NKCC suppression detected in intercalated-like cells from distal tubules after their exposure to P2Y1 agonists.  相似文献   

6.
The proximal tubule Na+-HCO 3 cotransporter is located in the basolateral plasma membrane and moves Na+, HCO 3, and net negative charge together out of the cell. The presence of charge transport implies that at least two HCO 3 anions are transported for each Na+ cation. The actual ratio is of physiological interest because it determines direction of net transport at a given membrane potential. To determine this ratio, a thermodynamic approach was employed that depends on measuring charge flux through the cotransporter under defined ion and electrical gradients across the basolateral plasma membrane. Cells from an immortalized rat proximal tubule line were grown as confluent monolayer on porous substrate and their luminal plasma membrane was permeabilized with amphotericin B. The electrical properties of these monolayers were measured in a Ussing chamber, and ion flux through the cotransporter was achieved by applying Na+ or HCO 3 concentration gradients across the basolateral plasma membrane. Charge flux through the cotransporter was identified as difference current due to the reversible inhibitor dinitro-stilbene disulfonate. The cotransporter activity was Cl independent; its conductance ranged between 0.12 and 0.23 mS/cm2 and was voltage independent between −60 and +40 mV. Reversal potentials obtained from current-voltage relations in the presence of Na+ gradients were fitted to the thermodynamic equivalent of the Nernst equation for coupled ion transport. The fit yielded a cotransport ratio of 3HCO 3:1Na+. Received: 19 January 1996/Revised: 24 April 1996  相似文献   

7.
We have studied regulatory volume responses of cultured bovine corneal endothelial cells (CBCEC) using light scattering. We assessed the contributions of fluoxetine (Prozac) and bumetanide-sensitive membrane ion transport pathways to such responses by determining K+ efflux and influx. Cells swollen by a 20% hypo-osmotic solution underwent a regulatory volume decrease (RVD) response, which after 6 min restored relative cell volume by 98%. Fluoxetine inhibited RVD recovery; 20 μm by 26%, and 50 μm totally. Fluoxetine had a triphasic effect on K+ efflux; from 20 to 100 μm it inhibited efflux 2-fold, whereas at higher concentrations the efflux first increased to 1.5-fold above the control value, and then decreased again. Cells shrunk by a 20% hyperosmotic solution underwent a regulatory volume increase (RVI) which also after 6 min restored the cell volume by 99%. Fluoxetine inhibited RVI; 20 μm by 25%, and 50 μm completely. Bumetanide (1 μm) inhibited RVI by 43%. In a Cl-free medium, fluoxetine (50–500 μm) progressively inhibited bumetanide-insensitive K+ influx. The inhibitions of RVI and K+ influx induced by fluoxetine 20 to 50 μm were similar to those induced by 1 μm bumetanide and by Cl-free medium. A computer simulation suggests that fluoxetine can interact with the selectivity filter of K+ channels. The data suggest that CBCEC can mediate RVD and RVI in part through increases in K+ efflux and Na-K-2Cl cotransport (NKCC) activity. Interestingly, the data also suggest that fluoxetine at 20 to 50 μm inhibits NKCC, and at 100–1000 μm inhibits the Na+ pump. One possible explanation for these findings is that fluoxetine could interact with K+-selective sites in K+ channels, the NKC cotransporter and the Na+ pump.  相似文献   

8.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl = 150 mequiv./l). Membrane potential was estimated to be −23.3 ± 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl activities are 4.6 ± 0.5; 68.3 ± 8.0; and 43.6 ± 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 ± 0.02 and 0.41 ± 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl (0.67 ± 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

9.
10.
Summary The effect of the loop diuretic furosemide (4-chloro-N-furfuryl-5-sulfamoyl-anthranilic acid) on the thiol-dependent, ouabain-insensitive K(Rb)/Cl transport in low K+ sheep red cells was studied at various concentrations of extracellular Rb+, Na+ and Cl. In Rb+-free NaCl media, 2×10–3 m furosemide inhibited only one-half of thiol-dependent K+ efflux. In the presence of 23mm RbCl, however, the concentration of furosemide to produce 50% K+ efflux inhibition (IC50) was 5×10–5 m. In Rb+ containing NaCl media, the inhibitory effect of 10–3 m furosemide was equal to that caused by NO 3 replacement of Cl in the medium. The apparent synergistic action of furosemide and external Rb+ on K+ efflux was also seen in the ouabain-insensitive Rb+ influx. A preliminary kinetic analysis suggests that furosemide binding alters both maximal K+(Rb+) transport and apparent external Rb+ affinity. In the presence of external Rb+, Na+ (as compared to choline) exerted a small but significant augmentation of the furosemide inhibition of K+(Rb+) fluxes. There was no effect of Cl on the IC50 value of furosemide. As there is no evidence for coupled Na+K+ cotransport in low K+ sheep red cells, furosemide may modify thiol-dependent K+(Rb+/Cl flux or Rb+ (and to a slight degree Na+) modulate the effect of furosemide.  相似文献   

11.
12.
Summary Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.  相似文献   

13.
-Aminolaevulinic acid (ALA) has been shown to be toxic to cultured neurons and glia at concentrations as low as 10 M. In an attempt to elucidate the mechanism of toxicity, the effects of ALA on membrane ATPase activity were investigated. Exposure of neuron cultures to 1 mM ALA for 7 days caused a substantial decrease in both Na+, K+-ATPase and Mg2+-ATPase activities. At lower concentrations, ALA affected only the Na+, K+-component. ALA appeared to act directly, inhibiting Na+, K+-ATPase activity in rat brain cortex membrane preparations at 10 M Although this effect was slight, it may well represent the mechanism of action of ALA, since ouabain, a potent inhibitor of Na+, K+-ATPase activity, proved to be more toxic to cultured neurons than ALA. Furthermore, cardiac glycoside overdosage causes neurological disturbances which are very similar to those observed in the acute attack of porphyria.  相似文献   

14.
This study examines the action of agonists and antagonists of P2 receptors on mouse mesenteric artery contractions and the possible involvement of these signaling pathways in myogenic tone (MT) evoked by elevated intraluminal pressure. Both ATP and its non-hydrolyzed analog α,β-ATP triggered transient contractions that were sharply decreased in the presence of NF023, a potent antagonist of P2X1 receptors. In contrast, UTP and UDP elicited sustained contractions which were suppressed by MRS2567, a selective antagonist of P2Y6 receptors. Inhibition of Na+, K+, 2Cl cotransport (NKCC) with bumetanide led to attenuation of contractions in UTP- but not ATP-treated arteries. Both UTP-induced contractions and MT were suppressed by MRS2567 and bumetanide but were insensitive to NF023. These data implicate a P2Y6-mediated, NKCC-dependent mechanism in MT of mesenteric arteries. The action of heightened intraluminal pressure on UTP release from mesenteric arteries and its role in the triggering of P2Y6-mediated signaling should be examined further.  相似文献   

15.
Summary The intracellular distribution of Na+, K+, Cl and water has been studied in the Ehrlich ascites tumor cell. Comparison of the ion and water contents of whole cells with those of cells exposed to La3+ and mechanical stress indicated that La3+ treatment results in selective damage to the cell membrane and permits evaluation of cytoplasmic and nuclear ion concentrations. The results show that Na+ is sequestered within the nucleus, while K+ and Cl are more highly concentrated in the cell cytoplasm. Reduction of the [Na+] of the incubation medium by replacement with K+ results in reduced cytoplasmic [Na+], increased [Cl] and no change in [K+]. Nuclear concentrations of these ions are virtually insensitive to the cation composition of the medium. Concomitant measurements of the membrane potential were made. The potential in control cells was –13.7 mV. Reduction of [Na+] in the medium caused significant depolarization. The measured potential is describable by the Cl equilibrium potential and can be accounted for in terms of cation distributions and permeabilities. The energetic implications of the intracellular compartmentation of ions are discussed.  相似文献   

16.
Summary Ouabain-insensitive, furosemide-sensitive Rb+ influx (J Rb) into HeLa cells was examined as functions of the extracellular Rb+, Na+ and Cl concentrations. Rate equations and kinetic parameters, including the apparent maximumJ Rb, the apparent values ofK m for the three ions and the apparentK i for K+, were derived. Results suggested that one unit molecule of this transport system has one Na+, one K+ and two Cl sites with different affinities, one of the Cl sites related with binding of Na+, and the other with binding of K+(Rb+). A 11 stoichiometry was demonstrated between ouabain-insensitive, furosemidesensitive influxes of22Na+ and Rb+, and a 12 stoichiometry between those of Rb+ and36Cl. The influx of either one of these ions was inhibited in the absence of any one of the other two ions. Monovalent anions such as nitrate, acetate, thiocyanate and lactate as substitutes for Cl inhibited ouabain-insensitive Rb+ influx, whereas sulfamate and probably also gluconate did not inhibitJ Rb. From the present results, a general model and a specialized cotransport model were proposed: 1) In HeLa cells, one Na+ and one Cl bind concurrently to their sites and then one K+ (Rb+) and another Cl bind concurrently. 2) After completion of ion bindings Na+, K+(Rb) and Cl in a ratio of 112 show synchronous transmembrane movements.  相似文献   

17.
The effects of changes in secretory concentrations of K+, Cl and Na+ on transmembrane potential difference (PD) and resistance were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments histamine was present, and SCN and omeprazole gave similar results. Increase of K+ from 4 to 80 mM, decrease of Cl from 160 to 16 mM and decrease of Na+ from 156 to 15.6 mM gave, respectively, 10 min after the change, in the secreting fundus ΔPD = 7.6, 10.0 and −2.2 mV and in the resting fundus ΔPD = 4.3, 14.4 and 0 mV. With cimetidine and no histamine, increase of K+ from 4 to 80 mM gave a ΔPD which decreased to near zero after exposure to cimetidine for at least 30 min. For the same K+ change, replacement of cimetidine with SCN or omeprazole and without histamine maintained ΔPD near zero and subsequent addition of histamine with inhibitor present gave a ΔPD of about 12 mV. The change in ΔPD was attributed to histamine increasing the secretory membrane area, which results in an increase in K+ conductance. Increase in ΔPD in the resting fundus compared to the secreting fundus for a decrease from 160 to 16 mM Cl may be due to relatively little Cl entering the lumina from cells in the resting fundus, which would result in a greater change of the ratio intracellular Cl/luminal Cl in the resting fundus than in the secreting fundus for the decrease in Cl studied.  相似文献   

18.
19.
The effects of changes in secretory concentrations of K+, Na+ and HCO3 on transmucosal potential difference (PD) and resistance in Cl-free (SO42−) solutions were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments, histamine was not present in the nutrient solution and cimetidine was primarily used to obtain acid inhibition. Increase of K+ from 4 to 80 mM, decrease of Na+ from 156 to 15.6 mM and decrease of HCO3 from 25 to 5 mM gave, 10 min after the change, in the secreting fundus Δ PD values of 39.7, −11.9 and 3.2 mV, respectively. In the resting fundus, 1.5 to 2 h after the addition of cimetidine, the same changes in secretory ion concentration gave Δ PD values of 12.2, −5.6 and 1.5 mV, respectively. Replacement of cimetidine with SCN and without histamine yielded a Δ PD somewhat lower than that in cimetidine, namely 9 mV for a K+ change from 4 to 80 mM. Subsequent addition of histamine with SCN present gave a Δ PD of about 21 mV. The change in PD was attributed to histamine increasing the secretory membrane area, leading to an increase in K+ conductance. Another possibility is that histamine increases the K+ conductance per se.  相似文献   

20.
Summary Cl influx at the luminal border of the epithelium of rabbit gallbladder was measured by 45-sec exposures to36Cl and3H-sucrose (as extracellular marker). Its paracellular component was evaluated by the use of 25mm SCN which immediately and completely inhibits Cl entry into the cell. Cellular influx was equal to 16.7eq cm–2 hr–1 and decreased to 8.5eq cm–2 hr–1 upon removal of HCO 3 from the bathing media and by bubbling 100% O2 for 45 min. When HCO 3 was present, cellular influx was again about halved by the action of 10–4 m acetazolamide, 10–5 to 10–4 m furosemide, 10–5 to 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS), 10–3 m amiloride. The effects of furosemide and SITS were tested at different concentrations of the inhibitor and with different exposure times: they were maximal at the concentrations reported above and nonadditive. In turn, the effects of amiloride and SITS were not additive. Acetazolamide reached its maximal action after an exposure of about 2 min. When exogenous HCO 3 was absent, the residual cellular influx was insensitive to acetazolamide, furosemide and SITS. When exogenous HCO 3 was present in the salines, Na+ removal from the mucosal side caused a slow decline of cellular Cl influx; conversely, it immediately abolished cellular Cl influx in the absence of HCO 3 . In conclusion, about 50% of cellular influx is sensitive to HCO 3 , inhibitable by SCN, acetazolamide, furosemide, SITS and amiloride and furthermore slowly dependent on Na+. The residual cellular influx is insensitive to bicarbonate, inhibitable by SCN, resistant to acetazolamide, furosemide, SITS and amiloride, and immediately dependent on Na+. Thus, about 50% of apical membrane NaCl influx appears to result from a Na+/H+ and Cl/HCO 3 exchange, whereas the residual influx seems to be due to Na+–Cl contranport on a single carrier. Whether both components are simultaneously present or the latter represents a cellular homeostatic counterreaction to the inhibition of the former is not clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号